Method Article
代謝を介したゲノム、共発現遺伝子の解析と標的化合物の同定の組み合わせは、遺伝子の機能アノテーションを付与します。
完全なゲノム配列が利用可能であり、このようなノックアウト変異体、野生のアクセッションおよび高度な繁殖個体群として生物資源の豊富されるモデル植物種の拡大を続ける数を考えると、遺伝子機能アノテーションのための上昇の負担があります。このプロトコルでは、結合された共発現遺伝子解析、メタボロミクスと情報を用いた植物遺伝子の機能注釈が( 図1)提供されています。このアプローチは、メタボロミクスを介してターゲット化合物の同定と、特定の代謝過程に関与する非注釈付き遺伝子の同定可能性が高い可能にするために既知の関数のターゲット遺伝子を用いての理論に基づいています。戦略が楽であるこれらのどれにもかかわらず、順方向と逆遺伝学のアプローチによって生成された集団では、この情報を適用するための前方に置かれます。当然の結果では、このアプローチは、新しいまたは特定のSEを表す未知のピークを特徴付けるためのアプローチとして使用することができます現在植物の代謝を理解する上で重要な試験である限られた組織、植物種やストレス治療のcondary代謝物。
1。試料調製
2。代謝物プロファイリングのための抽出
3。 LC-MSによる代謝物プロファイリング
4。データ解析
5。代謝経路の予測
6。シロイヌナズナオーソロガス遺伝子IDを持つ遺伝子のリストの準備
7。共発現遺伝子解析
8。新しい経路を予測するためのすべての情報の統合
9。バイオ資源を用いた遺伝子同定のための実験
10。代表的な結果
このプロトコルで説明されて統合された分析のプロシージャは、指定された実験の目的や生物学的および分析の組み合わせの選択に応じて多くの可能性を持っています。手順と実験デザインの選択は、ターゲット·経路、化合物、植物種に基づいて適切に実施すべきである。このプロトコルで説明する統合戦略は、FOCです。いくつかのバイオおよびデータリソースの効率的利用による植物遺伝子の機能と新規遺伝子機能の発見の注釈で使用される。期待される結果は、決定的な予測の場合のみで提供することを約束されています。この事実は、十分な証拠を組み合わせてプロファイルによって与えられることができない場合、実験が開始されるべきではないことを示しています。このような理由から、すべてのケースでは、RT-PCRによるこのような標的遺伝子発現プロファイリングなどの追加の予備実験では、遺伝子機能のあなたの予測をサポートすることができます。予測の精度と正確さは、組み合わせのバリエーションの質的差異と数に応じてより高い相関関係があります。さらに、有力な候補と有効な結果は経路の正確な予測から来ることができます。ピーク注釈は、例えば、文献調査のためのいくつかのアプローチの組み合わせは、リファレンス·植物エキス、MS n分析、臓器特異性と変異体解析13によって行われるべきである。
1 "SRC =" / files/ftp_upload/3487/3487fig1.jpg "/>
図1。複合的なアプローチを介した遺伝子アノテーションの実験的なフローの概要はいくつかのケースでは、プロジェクトでは、特別な条件や組織で検出された小説のピークと、その代謝の中でその役割を理解するための欲望の発見から始まります。他の例では、プロジェクトの目的は、転写因子などの主要な調節因子の遺伝子同定または検出です。実験のデザインは、さまざまな臓器から組織試料の広い範囲を使用して、目標経路の代謝産物レベルの明確な違いを示したデータセットを持つと、ストレス状態にさらされる差動生育した植物や植物のために計画され、に材料を施すべきである代謝産物プロファイリング。変異体とトランスジェニック植物と同様にQTLに宿るの繁殖材料は、これらの研究に適した遺伝物質を表しています。小説経路の予測が正確で慎重に行うべきであるそのようなあなたの経路·オブ·関心の遺伝子発現データによると、臓器の有価証券およびストレス応答としてmetabolotypeタイプの異なるピークアノテーションと組み合わせアプローチ。最後のステップでは、代謝物と転写産物プロファイリングが実行されるべきである、異種発現を介した Webベースのリソースと遺伝子発現のin vitroでの特性評価での in silico解析に組み合わせると、最終的になる遺伝子候補の確認とその機能の解明につながると代謝経路内の位置。略語:QTL、量的形質遺伝子座。
図2。ピークの注釈の組合せアプローチの流れに動作します。ピーク同定と注釈標準化合物によって、野生型との比較変異体をノックアウトするための手順は、ターゲットピークの多次元質量分析法は、純粋なCOMのマススペクトルを参照するデータベース12からポンド。略語:DB、データベース、KO、ノックアウト、1次元、一次元、2次元、二次元、NMR、核磁気共鳴、赤外線、赤外線、MS nの質量質量スペクト。
図3。アントシアニン経路の例の共同規制のネットワーク解析。共発現解析は、PRIME(使用して行ったhttp://prime.psc.riken.jp/?action=coexpression_indexでATTEDIIバージョン3 8,2のデータセットに基づいて)をPajekプログラム( http://vlado.fmf.uni-lj.si/pub/networks/pajek/ )。正の相関関係(r <0.5)は、ネットワーク接続を確立するために使用されます。赤いノード:12アントシアニン酵素遺伝子(At5g13930、CHS、TT4、カルコンシンターゼ、At3g55120、CHI、TT5、カルコンisomerise、At3g51240、F3H、TT6、フラバノン3 -ヒドロキシ、At5g07990、F3'H、TT7、フラボノイド3'-ヒドロキシラーゼ、At5g17050、Fd3GT、UGT78D2、フラボノイド3 - O-グルコシルトランスフェラーゼ、At5g17220、AtGSTF12、TT19 、At5g42800、DFR、TT3、ジヒドロレダクターゼ、At4g22880、ANS / LDOX、TT18、アントシアニジンsynthese、At4g14090、A5GT、アントシアニン5 - O-グルコシルトランスフェラーゼ、At5g54060、A3G2 "XT、推定されるアントシアニン3 - O -グルコシド2" - O - xylosyltransferase、At3g29590、A5GMaT、アントシアニン5 - O-グルコシド6'' ' - O-malonyltransferase、At1g03940、A3GCouT、アントシアニン3 - O -グルコシド6 " - O - P-coumaroyltransferase)とアントシアニン生産のための2つの転写因子(At1g56650、 PAP1、At1g66390、PAP2)は、候補遺伝子を検索するために使用された候補遺伝子は、rの係数を持つしきい値を使用して検索"のセットの積集合"によって発見された<。/ emは照会すべての遺伝子(フォーティーンアントシアニン生合成遺伝子)によってセットの積集合によって照会0.50。>>相関の候補遺伝子(68遺伝子)、および照会の遺伝子(14遺伝子)を含む共発現ネットワークは、R PRIMEデータベースを使用して、> 0.50を使って検索"セットの相互接続"で再構築した。 PRIMEデータベースやネットワークから "。ネット 'ファイルでフォーマットされた出力ファイルは、Pajekソフトウェアを使用して描かれていました。青ノードは、アントシアニン遺伝子と相関して候補遺伝子を示しています。
種 | 主要な二次代謝産物 |
シロイヌナズナ | グルコシノレート、フラボノール、アントシアニン、sinapoylデリバティブ |
ポプラtrichocarpa | フラボノール、アントシアニン、サリチル酸誘導体 |
ブドウ黒とう | フラボノール、アントシアニン、タンニン、スチルベン |
トマト | フラボノール、アントシアニン、グリコアルカロイド、関連chrologenate、 |
タバコアナタバカム | フラボノール、アントシアニン、nicotianamide、acylsugarの関連chrologenate |
イネ | Glycoflavone、アントシアニン、ステロール誘導体 |
トウモロコシ5月 | Glycoflavone、アントシアニン、ベンゾオキサジノン、ステロール誘導体 |
アルファルファtruncatula | イソフラボン、アントシアニン、サポニン、 |
ジャポニカロータス | イソフラボン、フラボノール、アントシアニン、サポニン、 |
モデル植物種の表I.主要な二次代謝産物。
共発現データベース | アドレス |
植物のクロス仕様IES | |
COP | http://webs2.kazusa.or.jp/kagiana/cop0911/~~V |
プラネット | http://aranet.mpimp-golm.mpg.de/ |
植物種 | |
ATEED-II | http://atted.jp/ |
BAR | http://142.150.214.117/welcome.htm |
COP | http://webs2.kazusa.or.jp/kagiana/cop |
GeneCAT | http://genecat.mpg.de/ |
シロイヌナズナ | |
ACT | http://www.arabidopsis.leeds.ac.uk/act/coexpanalyser |
AthCoR@CSB.DB | http://csbdb.mpimp-golm.mpg.de/csbdb/dbcor/ath.html |
CressExpress | http://cressexpress.org/~~V |
PRIME | http://prime.psc.riken.jp/?action=coexpression_index |
イネ | |
RiceArrayNet | http://arraynet.mju.ac.kr/arraynet/~~V |
米·アレイ·データベース | http://www.ricearray.org/coexpression/coexpression.shtml |
表II。 シリコ共発現解析のために利用可能な遺伝子発現データベース。
トランスクリプトミクスとメタボロミクス技術は数年前から使用されていることを考えると、遺伝子アノテーションを支援メタボロミクスのためのデータ統合のプロセスは、一般的に未知の代謝産物を表す新たなピークの同定から始まる。この事実は、代謝物ピークの定量的な分散、またはそれらの生合成に関与すると考え、新規の候補遺伝子を評価することで次のステージへ導く。このプロトコルで説明されて戦略は、しかし、3つの主要な問題i)のピークアノテーションの難しさ、ⅱ)経路予測の複雑性、iii)の遺伝子発現データの遺伝子情報と品質の解像度を持っています。最初の問題に対処するために、ピークの注釈は、MS n分析、参照エキス、変異体の解析、代謝物データベース検索と文献調査からの情報を活用した標準化合物又はコンビナトリアルアプローチの共溶出( 図2、12)で行われるべきである。 sのecond問題、経路の予測は、正しいピークアノテーションによって得ることができます。代謝産物の蓄積が関連遺伝子の遺伝子発現と相関する必要があるためしかし、組織特異性の代謝物プロファイリングにも、サポートのピーク注釈することができます。したがって、異なる組織や成長条件の組み合わせのプロファイルは、この第二の問題のために役立ちます。遺伝子情報の解決に関する第三の問題は、配列データの進行状況に依存します。ゲノムシーケンスの完了せずにモデル植物の場合には、他のモデル植物でオーソログ遺伝子を用いた共発現解析に便利です。アミノ酸配列の詳細なアラインメントを比較し、系統樹解析では、他の種にモデル生物を接続するためにサポートすることができます。
このプロトコルはすべての代謝に適しています。それも強力な転写Cの対象になる特徴は、中間および二次代謝の解析における最も効率的です。ontrol 1,5,11,16。いくつかの例では、共発現解析は、硫黄同化、β-酸化のための遺伝子、分岐鎖アミノ酸の分解、クロロフィルの破壊、およびリジン異化3、細胞壁代謝10,7とカスケード14に信号を送る光の中で実行することに成功しました。複合ゲノミクス、メタボロミクスと情報を介した遺伝子機能のアノテーションは転写因子の生合成遺伝子と直接レギュレータのためだけでなく、生理的なプロセスや応答を理解するためだけではありません(例えば図3 14を参照)。
モデル植物から作物種にこのアプローチを開発するために、植物種間での代謝の比較はいくつかの一般的な代謝の強力なアプローチです。たとえば、同じ化合物は、異なる植物種で検出された場合、いくつかのオーソログ遺伝子がこれらの植物種で発見され、オーソログ遺伝子を用いてクロス種の共発現解析は、STRONを提供することができますあなたの予測のgをサポートしています。 :このアプローチは、植物種との共発現解析(6、プラネットでは、このような大麦、米、小麦、大豆などのほか重要な作物で、ポプラ、ウマゴヤシ、シロイヌナズナで行うことができhttp://aranet.mpimp-golm.mpg 。/ DE 、、9、COP: http://webs2.kazusa.or.jp/kagiana/cop0911/ 。の例を参照してください、15)。
利害の衝突が宣言されません。
我々は、有用な議論のためのMPIMPに理研PSC博士とビョルンUsadelの教授斉藤和季に感謝します。 TTは、アレクサンダー·フォン·フンボルト財団から奨学金によってサポートされています。
Name | Company | Catalog Number | Comments |
試薬の名前 | 会社 | カタログ番号 | |
蒸留水ULC / MS卒業生 | BIOSOLVE | 23214102 | |
アセトニトリル(ACN)ULC / MSグレード | BIOSOLVE | 01204102 | |
メタノール(MeOH)ULC / MSグレード | BIOSOLVE | 13684102 | |
液体クロマトグラフィー用ギ酸(HCOOH)ULC / MSグレード | BIOSOLVE | 06914131 | |
標準化合物 | EXTRASYNTHESE | ||
リニアイオントラップ(IT)ESI-MSシステムフィニガン-LTQ | サーモフィニガン | ||
HPLCシステムのサーベイ | サーモフィニガン | ||
C18分析カラムのルナ(2)、2.0ミリメートルの直径150ミリメートルの長さは、100Åの細孔サイズと3mmの球状粒子 | Phenomenex | 00F-4251-B0 | |
Xcaliburソフトウェア | サーモフィニガン |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved