מקור: המעבדה של ד"ר ניל אברמס — מכללת SUNY למדעי הסביבה ויערנות
לכל התגובות הכימיות יש שיעור מסוים המגדיר את ההתקדמות של מגיבים הולכים למוצרים. שיעור זה יכול להיות מושפע טמפרטורה, ריכוז, ואת המאפיינים הפיזיים של המגיבים. התעריף כולל גם את המתווכים ואת מצבי המעבר שנוצרים אך אינם המגיבים ולא המוצר. חוק התעריפים מגדיר את תפקידו של כל מגיב בתגובה וניתן להשתמש בו כדי לעצב מתמטית את הזמן הנדרש לתגובה כדי להמשיך. הצורה הכללית של משוואת קצב מוצגת להלן:
כאשר A ו- B הם ריכוזים של מינים מולקולריים שונים, m ו- n הם סדרי תגובה, ו- k הוא קבוע הקצב. הקצב של כמעט כל תגובה משתנה עם הזמן כאשר המגיבים מתרוקנים, מה שהופך התנגשויות יעילות פחות סביר להתרחש. קבוע הקצב, לעומת זאת, קבוע לכל תגובה בודדת בטמפרטורה נתונה. סדר התגובה ממחיש את מספר המינים המולקולריים המעורבים בתגובה. חשוב מאוד לדעת את חוק התעריפים, כולל קצב קבוע וסדר תגובה, אשר ניתן לקבוע רק באופן ניסיוני. בניסוי זה, נחקור שיטה אחת לקביעת חוק התעריפים ונשתמש בו כדי להבין את התקדמות התגובה הכימית.
קינטיקה ותרמודינמיקה
כל התגובות הכימיות נשלטות על ידי שני גורמים, קינטיקה ותרמודינמיקה. הגורם התרמודינמי הוא ההבדל באנרגיה חופשית המשתחררת במהלך תגובה כימית. אנרגיה חופשית זו, המכונה ספונטניות, היא ערך מורכב הנובע מהאנטלפיה (חום) והאנטרופיה (הפרעה) בתוך תגובה כימית. קינטיקה מתייחסת לקצב התגובה הכימית וכמה מהר המערכת מגיעה לשיווי משקל. בעוד קינטיקה יכולה להסביר את מהירות התגובה, התרמודינמיקה מניבה מידע על האנרגטיות שלה. במילים פשוטות, התרמודינמיקה מתייחסת ליציבות וקינטיקה מתייחסת לתגובה.
קביעת שיעור
Rate הוא מדידה מבוססת זמן, כלומר הוא משתנה כל הזמן ככל שהתגובה מתקדמת. ניתן לייצג זאת באמצעות חוק שיעור דיפרנציאלי, המבטא את השינוי בריכוז על פני שינוי בזמן. באופן ניסיוני, קשה להשתמש בחוק התעריף הדיפרנציאלי, כך שאנו יכולים להשתמש בחשבון ולייצג את חוק התעריפים כחוק התעריפים המשולב על ידי שילוב חוק התעריף הדיפרנציאלי. חוק התעריף המשולב מייצג את ריכוזי התגובה בתחילת התגובה ובמרווח זמן מוגדר. להלן טבלת סדר, חוק תעריפים וחוק התעריפים המשולבים:
כל סדר מסביר את התלות בריכוז המגיב בשיעור התגובה. לדוגמה, חוק שיעור הזמנה אפסי, rate = k, מציין שהשיעור תלוי רק בקצב הקצב, ולא בריכוז המגיב. זה נפוץ בתגובות קטליטיות שבהן הזרז הוא מוצק ושטח הפנים אינו משתנה במהלך התגובה. חוק שיעור הוראה1 מראה כי השיעור תלוי בריכוז של מגיב אחד, אם כי מגיבים אחרים עשויים להיות נוכחים. חוק שיעור מסדרשני מציין כי השיעור תלוי בריכוז של שני מגיבים בתגובה. מגיבים אלה יכולים להיות זהים, כלומר קצב = k[A]2, או שונה, שיעור = k[A][B]. מכיוון ששני הריכוזים משתנים כל הזמן, קשה למדוד קבועי שיעור מסדר שני במעבדה. ללא קשר לפקודה, שימוש בחוק התעריפים המשולב מפשט את ניתוח הנתונים על-ידי מתן אפשרות להתוויית נתונים והחלת משוואה ליניארית שתתאים לנתונים. מכיוון שרק חוק תעריף משולב אחד יתאים לנתונים, ניתן לזהות באופן מיידי את קצב התגובה ואת סדר התגובה.
ניסוי קינטיקה
קביעת חוק התעריפים מתחילה בהקמת ניסוי קינטיקה לתגובה הכימית. ניסוי קינטיקה נשלט בקפידה כך שהמדידות נעשות במרווחי זמן מתוזמנת על מנת לקבוע את השינוי בריכוז המינים לאורך זמן. מין זה יכול להיות מגיב (הפחתת ריכוז עם הזמן) או מוצר (הגדלת הריכוז עם הזמן). אם מגיבים מרובים מעורבים, חשוב מאוד כי הריכוז של מגיב אחד בלבד משתנה עם הזמן. הגדלת הריכוז של המגיבים האחרים גבוה בהרבה מהמגיב הנחקר גורם לזה להיראות כי הריכוז של מגיב אחד בלבד משתנה במהלך הניסוי.
בניסוי זה, פירוק קטליטי של מי חמצן מעל זרז פלטינה נחקר. מאז הפלטינה היא זרז, רק מין אחד מעורב אשר מתפרק לשני מוצרים על פי התגובה להלן:
2 H2O2(aq) → O2(ז) + 2 H2O(l)
מכיוון שאחד המוצרים, O2, הוא גז, ניתן למדוד את העלייה בלחץ של המערכת לאורך זמן ואת חוק הגז האידיאלי (PV = nRT) המשמש לקשר לחץ מולים. ברגע שזה נעשה עבור כמה ריכוזים שונים של המגיב, ניתן לפתור את סדר התגובה ואת חוק התעריף.
1. הכנתח' 2ו2 דילולים
טבלה 1. נעשה שימוש בפתרונות H2O2.
2. הכנת כלי התגובה
3. מדידת התפתחות החמצן
4. ניתוח נתונים
נתוני התפתחות חמצן ושיעורים התחלתיים
איור 1. לחץ לעומת נתוני זמן עבור כל ניסוי בטמפרטורה קבועה. השיפוע שווה לקצב המיידי של התגובה.
סדר תגובה
טבלה 2. תוצאות 5 H2O2 ניסויים.
איור 2. חלקת יומן טבעית של ריכוז לעומת שיעור. השיפוע שווה ערך לסדר התגובה.
קצב קבוע, k
טבלה 3. חישוב קבוע הקצב, k.
בעוד שקביעת משתני חוק שיעור יכולה להיות מעורבת מתמטית, השיטות הן למעשה די פשוטות. כל עוד ניתן למדוד את היעלמותו של מגיב או מראה של מוצר, ניתן להשתמש בחלקות שיעור כדי לחשב את קבוע הקצב. הרחבה של שיטה זו משמשת לעתים קרובות כדי לקבוע את אנרגיית ההפעלה של תגובה, Ea, על ידי מדידת הקצב וחישוב קבוע הקצב במגוון טמפרטורות. שיטה זו כוללת שימוש במשוואת ארניוס, k = Ae(-Ea/RT). שילוב חוק הקצב, כולל סדר תגובה, עם אנרגיית ההפעלה של תגובה מספק פרופיל קינטי מלא למהירות (או איטית) תגובה מתקדמת ומספק מידע מהעולם האמיתי על האופן שבו גורמים כמו טמפרטורה וריכוז יכולים להשפיע על תגובה זו.
קינטיקה כימית מוצאת יישומים בתעשיות ובתחומים מגוונים כמו תרופות, בטיחות גרעינית, תיקון סביבתי, מסנני קרינה. לדוגמה, תרופה מסוימת עשויה להיות קבועה בקצב גדול מאוד, כלומר היא נרקבת מהר מאוד בגוף. הדבר משפיע על שיטת השימוש, המנונים והמסירה. ביחס למדע הגרעין, רדיואקטיביות עוקבת אחר קינטיקה מסדר ראשון, כלומר הזמן הנדרש לחומר גרעיני כדי להירקב לרמה בטוחה מאופיין היטב. מדידות יהיו דומות מאוד לשיטה המוצגת כאן ויכולות להיות מיושמות גם על ריקבון של מזהמים סביבתיים רבים. באופן דומה, מסנני קרינה גם לדעיכה עם פרופילים קינטיים ידועים המאפשרים ליצרנים ליידע את הצרכנים כמה מהר קרם הגנה צריך להיות מיושם כדי לשמור על רמות בטוחות.
Skip to...
Videos from this collection:
Now Playing
General Chemistry
195.9K Views
General Chemistry
655.6K Views
General Chemistry
273.9K Views
General Chemistry
555.8K Views
General Chemistry
383.4K Views
General Chemistry
181.4K Views
General Chemistry
141.3K Views
General Chemistry
345.4K Views
General Chemistry
424.1K Views
General Chemistry
78.4K Views
General Chemistry
158.3K Views
General Chemistry
265.0K Views
General Chemistry
160.6K Views
General Chemistry
44.5K Views
General Chemistry
91.4K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved