Method Article
Los virus de la gripe A son patógenos respiratorios contagiosos que causan epidemias anuales y pandemias ocasionales. Aquí, describimos un protocolo para rastrear infecciones virales in vivo usando una nueva luciferasa recombinante y bi-reportero expreso de fluorescencia IAV (BIRFLU). Este enfoque proporciona a los investigadores una excelente herramienta para estudiar IAV in vivo.
Los virus de la gripe A causan enfermedades respiratorias humanas que se asocian con consecuencias económicas y sanitarias significativas. Al igual que con otros virus, el estudio de la AIF requiere el uso de enfoques secundarios laboriosos para detectar la presencia del virus en células infectadas y/o en modelos animales de infección. Esta limitación se ha eludido recientemente con la generación de IAVs recombinantes que expresan proteínas de reportero fluorescentes o bioluminiscentes (luciferasa) fácilmente trazables. Sin embargo, los investigadores se han visto obligados a seleccionar genes de reportero fluorescentes o luciferasa debido a la capacidad restringida del genoma de IAV para incluir secuencias extranjeras. Para superar esta limitación, hemos generado un IAV bi-reportero (BIRFLU) de replicación recombinante que expresa fácilmente un gen fluorescente y un gen de reportero de luciferasa para rastrear fácilmente las infecciones por IAV in vitro e in vivo. Con este fin, se modificaron los segmentos virales no estructurales (NS) y hemaglutininas (HA) de la gripe A/Puerto Rico/8/34 H1N1 (PR8) para codificar la Venus fluorescente y las proteínas bioluminiscentes Nanoluc luciferasa, respectivamente. Aquí, describimos el uso de BIRFLU en un modelo de ratón de infección por IAV y la detección de ambos genes reporteros utilizando un sistema de imágenes in vivo. En particular, hemos observado una buena correlación entre las expresiones de los reporteros y la replicación viral. La combinación de técnicas de vanguardia en biología molecular, investigación animal y tecnologías de imagen, proporciona a los investigadores la oportunidad única de utilizar esta herramienta para la investigación de la gripe, incluyendo el estudio de las interacciones virus-huésped y la dinámica de infecciones virales. Es importante destacar que la viabilidad de alterar genéticamente el genoma viral para expresar dos genes extraños de diferentes segmentos virales abre oportunidades para utilizar este enfoque para: (i) el desarrollo de nuevas vacunas IAV, (ii) la generación de IAVs recombinantes que pueden utilizarse como vectores de vacunas para el tratamiento de otras infecciones por patógenos humanos.
El virus de la gripe A (IAV) es un virus de ARN segmentado de sentido negativo de una sola cadena envuelto de la familia Orthomyxoviridae 1,2,3. La Organización Mundial de la Salud (OMS) estima entre 3 y 5 millones de casos anuales de gripe y más de 250.000 muertes por gripe en todo el mundo4,5,6. Los grupos que son particularmente vulnerables a la gripe incluyen ancianos, personas inmunodeprimidas y niñosde 7,8,9,10,11. Aunque las vacunas están disponibles y representan la intervención más común y eficaz contra la infección viral, iAV es capaz de evolucionar rápidamente y escapar de la inmunidad preexistente3,12,13, 14 , 15. La reaparición de una cepa pandémica H1N1 en 2009 y la aparición de IAV patógena reiteran la amenaza constante para la salud pública humana en todo el mundo4,16.
Durante una epidemia o pandemia, es crucial determinar rápidamente la patogenicidad y la transmisibilidad de los virus recién aislados. Las técnicas actualmente disponibles para detectar el virus consumen mucho tiempo y a veces requieren el uso de enfoques laboriosos, lo que puede retrasar la realización de estos análisis17,18,19,20. Además, los ensayos virales actuales son difíciles de ampliar, lo que podría ser necesario durante el caso de un brote. Por último, el uso de modelos animales validados de infección, como ratones, conejillos de indias y hurones, se utiliza de forma rutinaria y son vitales para estudiar las infecciones por gripe, las respuestas inmunitarias y la eficacia de nuevas vacunas y/o antivirales. Sin embargo, estos modelos son restrictivos debido a la incapacidad de observar la dinámica viral en tiempo real; esto limita los estudios a la toma de imágenes estáticas de infecciones virales21,22,23,24,25. Los animales utilizados en estos ensayos también son eutanasiados con el fin de determinar la carga viral, aumentando así el número de animales necesarios para completar estos estudios26. Para eludir todas estas limitaciones, muchos investigadores confían en el uso de IAV sordosas y con opiniones que expresan periodistas, que son capaces de acelerar los ensayos virológicos y detectar la carga viral y la diseminación in vivo en tiempo real26 ,27,28,29,30,31,32,33,34,35 ,36,37,38,39,40,41. Es importante destacar que estos IAV que expresan a los periodistas son capaces de replicarse de forma similar a los IAV de tipo salvaje (WT) en el cultivo celular y en modelos animales de infección33,42.
Las proteínas fluorescentes y bioluminiscentes son dos sistemas de reportero comúnmente utilizados por los investigadores debido a su sensibilidad, estabilidad y facilidad de uso. Además, hay un enorme apoyo y avance en las tecnologías de detección de proteínas fluorescentes y bioluminiscentes43,44,45,46,47,48 . Las proteínas fluorescentes y la luciferasa tienen diferentes propiedades que les permiten brillar, diferenciando específicamente en cómo se generan los estados excitados y cómo se detecta la emisión43,44,45, 46,47,48. Las proteínas fluorescentes se excitan primero absorbiendo la energía, que posteriormente se libera como luz en una longitud de onda diferente a medida que las moléculas disminuyen a un estado de energía más bajo43. Por otro lado, la bioluminiscencia se deriva de una reacción exotérmica química que implica un sustrato, oxígeno, y a veces ATP con el fin de producir la luz45. Debido a las diversas propiedades de estos dos tipos de proteínas de reportero, uno tal vez más ventajoso que el otro dependiendo del estudio de interés. Mientras que las proteínas fluorescentes se utilizan ampliamente para observar la localización celular28,41, sus señales in vivo tienen una intensidad inadecuada y a menudo se oscurecen por la autofluorescencia en los tejidos vivos49. Por lo tanto, los investigadores confían en las luciferasas para evaluar la dinámica viral en organismos vivos, aunque las proteínas fluorescentes pueden ser preferidas para estudios ex vivo50,51,52,53. A diferencia de las proteínas fluorescentes, las luciferases son más convenientes para estudios in vivo y más aplicables en enfoques no invasivos26,27,28,29,30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 54. En última instancia, en función del tipo de estudio, los investigadores deben elegir entre el uso de una proteína fluorescente o una proteína de reportero de luciferasa como su lectura, que somete su estudio a un equilibrio de funcionalidades y sensibilidades, y severamente restringe la utilidad de los virus de reportero recombinante. Además, existen preocupaciones con respecto a la correlación entre la expresión de diferentes genes reporteros utilizando sistemas de fluorescencia o luciferasa y replicación o diseminación viral, lo que podría poner en peligro la interpretación de los datos obtenidos con iAVs que expresan a un reportero.
Hemos superado esta limitación generando un IAV bi-reportero competente para replicación recombinante (BIRFLU) que codifica tanto para un fluorescente como para una proteína luciferasa en el mismo genoma viral55 (Figura1). Aquí, NanoLuc luciferase (Nluc), una pequeña y brillante proteína bioluminiscente48,se insertó aguas arriba de la secuencia de hemaglutinina (HA) en el segmento viral HA de la gripe A/Puerto Rico/08/1934 H1N1 (PR8)24,33, 40,55,56,57. Además, Venus, una proteína fluorescente monomérica de uso frecuente, se insertó en el segmento viral no estructural (NS)32,33,36,41,55. Dado que BIRFLU codifica los genes de reportero fluorescentes y luciferasa, la señal de proteína del reportero se puede utilizar como lectura para determinar la replicación viral y la diseminación in vitro o in vivo55. Puede encontrar información adicional sobre la generación y la caracterización in vitro o in vivo de BIRFLU en nuestra reciente publicación55. BIRFLU se puede utilizar para probar la eficacia de los medicamentos antivirales o anticuerpos neutralizantes a través de un nuevo ensayo de microneutralización basado en fluorescentes y bioluminiscentes55. Por otra parte, BIRFLU también se puede utilizar para evaluar la dinámica viral en un modelo de ratón de infección55. En este manuscrito, describimos los procedimientos para caracterizar BIRFLU55 in vitro y cómo estudiar la infección BIRFLU en ratones utilizando sistemas de imágenes de luminiscencia in vivo para la detección de Nluc in vivo o de Venus ex vivo.
La combinación de técnicas de vanguardia en biología molecular, investigación animal y tecnologías de imagen, ofrece a los investigadores la oportunidad única de utilizar BIRFLU para la investigación de IAV, incluyendo el estudio de interacciones virus-huésped, dinámica de la infección viral; el desarrollo de nuevos enfoques vacunales para el tratamiento terapéutico de las infecciones por IAV o el posible uso de la IAV como vector de vacunapara el tratamiento de otras infecciones patógenas.
Todos los protocolos relacionados con ratones han sido aprobados por el Comité Institucional de Cuidado y Uso de Animales (IACUC) y el Comité Institucional de Bioseguridad (IBC) de la Universidad de Rochester, Facultad de Medicina y Odontología. Todos los experimentos realizados en animales siguen las recomendaciones de la Guía para el Cuidado y Uso de Animales de Laboratorio del Consejo Nacional de Investigación58. El Vivarium y la División de Instalaciones de Medicina Animal de Laboratorio en la Facultad de Medicina y Odontología de la Universidad de Rochester está acreditado por la Asociación para la Evaluación y Acreditación del Cuidado Animal de Laboratorio (AALAC) Internacional y cumplir con las leyes federales y estatales y la política de los Institutos Nacionales de Salud (NIH). Se requiere un equipo de protección personal (EPP) adecuado cuando se trabaja con ratones. Se deben implementar políticas y requisitos similares al realizar experimentos descritos en este manuscrito en cada institución.
1. Uso de pequeños animales vertebrados
2. Bioseguridad
NOTA: En este manuscrito, BIRFLU se generó en la columna vertebral de la gripe A/Puerto Rico/08/34 H1N1 (PR8), que es una cepa IAV de laboratorio común adaptada al ratón23,32,33,56. El virus se generó utilizando enfoques de genética inversa descritos anteriormente basados en plásmidos y una descripción completa de la generación, y la caracterización in vitro e in vivo de BIRFLU se puede encontrar en nuestra reciente publicación55. Todos los procedimientos que involucran infecciones por ASI (in vitro o in vivo) se realizaron en un gabinete de seguridad biológica en condiciones de nivel de bioseguridad (BSL)-2.
PRECAUCION: Debe determinarse un nivel adecuado de bioseguridad de conformidad con una evaluación del riesgo de bioseguridad. Deberá consultarse con la institución en la que se realizarán los experimentos información adicional sobre la realización de evaluaciones del riesgo de seguridad de la bioseguridad y el establecimiento de una contención eficaz de la seguridad de la biotecnología.
3. Caracterización in vitro de BIRFLU (Figura 2)
NOTA: Refiera al cuadro 1 para todas las composiciones del buffer y de los medios.
4. En Vivo Caracterización de BIRFLU (Figura3 y Figura 4)
Generación y caracterización de BIRFLU in vitro (Figura 1 y Figura 2)
Se construyó un IAV de replicación recombinante que expresaba dos genes de reportero diferentes (BIRFLU) utilizando técnicas de biología molecular y genética inversa basadas en plásmidos de última generación (Figura1). Aquí, elegimos utilizar Nluc debido a varias ventajas sobre otras luciferasas, incluyendo su pequeño tamaño, independencia ATP, mayor intensidad, y sustrato optimizado48,60. Nluc fue clonado en el segmento HA de IAV PR8 seguido del teschovirus porcino (PTV) 2A sitio de escisión (2A) delante del marco de lectura abierto (ORF) de HA (Figura 1). El ORF de HA incluía mutaciones silenciosas para eliminar las señales de embalaje originales y evitar cualquier posible recombinación. La señal de embalaje HA completa se añadió delante de Nluc para permitir la incorporación adecuada del segmento HA modificado en la expresión virión y Nluc y HA del mismo segmento de ARN viral (Figura1). Además, la proteína fluorescente Venus fue clonada en un segmento modificado IAV PR8 NS que codifica las dos proteínas virales NS1 y NEP de una sola transcripción32,36,41,54, 57. Con ese fin, Venus se fusionó con el Terminal C de NS1 y todo el ORF NEP fue clonado aguas abajo del sitio deescisión PTV 2A que se colocó entre las secuencias NS1-Venus y NEP (Figura 1). En última instancia, estas dos construcciones modificadas de plásmido viral HA y NS se utilizaron en combinación con el resto de los plásmidos de genética inversa IAV PR8 para generar BIRFLU (Figura1). La caracterización in vitro e in vivo de BIRFLU se ha descrito previamente55.
En la Figura2, caracterizamos birFLU in vitro determinando los niveles de expresión de Venus, Nluc y NP utilizando enfoques de fluorescencia e inmunofluorescencia indirecta (Figura 2A,B). Las monocapas confluentes de células MDCK fueron infectadas o infectadas por simulacros (MOI 0.1) con virus WT o BIRFLU PR8 y, a las 18 h después de la infección, la expresión de Venus se evaluó directamente mediante microscopía de fluorescencia (Figura2A,B). La expresión Nluc (Figura2A)y NP (Figura2B)se visualizó mediante inmunofluorescencia indirecta utilizando anticuerpos específicos para cada proteína. Como se preveía, la expresión de Venus y Nluc se detectó sólo en células infectadas por BIRFLU y no en células infectadas por el virus WT PR8. Además, la microscopía de inmunofluorescencia indirecta reveló la expresión NP en células infectadas por WT y BIRFLU PR8. No se detectó ninguna expresión de Venus, Nluc o NP, como se esperaba, en células infectadas simuladas (FiguraA,B).
Para evaluar los niveles de expresión de Nluc in vitro, las células MDCK se infectaron (MOI 0.001) con virus WT o BIRFLU PR8 y se evaluó la actividad de Nluc en los sobrenatos de cultivo tisular a 24, 48, 72 y 96 h después de la infección (Figura2C). Sólo se detectó actividad nluc en supernatantes de cultivo de tejido de células MDCK infectadas con BIRFLU (Figura2C). La actividad de Nluc en los sobrenatantes del cultivo tisular se detectó tan pronto como 24 h después de la infección con niveles más altos de expresión a 96 h después de la infección, probablemente porque el efecto citopático (CPE) inducido durante la infección viral libera la proteína Nluc retenida en la celda. Para evaluar la idoneidad de BIRFLU en células cultivadas, también se evaluó la cinética de crecimiento de los virus WT y BIRFLU PR8 (Figura 2D) y la presencia de virus infecciosos en los sobrenatos de cultivo de tejidos se determinó mediante un ensayo de enfoque inmune (Figura2D) ). En particular, la cinética de replicación de BIRFLU fue comparable a la del virus WT PR8, aunque la replicación de BIRFLU se retrasó ligeramente y no alcanzó los mismos lanzadores virales que EL WT PR8. Sin embargo, BIRFLU fue capaz de alcanzar lanzadores de 5 x 107 PFU/ml (Figura2D),lo que indica que la expresión de dos genes reporteros en el genoma viral no interfiere significativamente con la replicación de BIRFLU en células MDCK.
Seguimiento de la infección por BIRFLU en ratones(Figura3 y Figura 4)
La Figura 3 es un diagrama de flujo esquemático para la evaluación de la dinámica BIRFLU en un modelo de ratón de infección por IAV. Los ratones BALB/C de cinco a siete semanas de edad se infectaron simulados con 1 pbS o se infectaron con 1 x 106 PFU de BIRFLU por vía intranasal. A los 3 días después de la infección, los ratones fueron anestesiados con isoflurano y luego inyectados con sustrato de Nluc retro-orbitalmente. Todos los ratones se colocaron inmediatamente en el instrumento IVIS y la señal Nluc se evaluó in vivo utilizando el IVIS. A continuación, los ratones fueron eutanasiados y los pulmones fueron cosechados. Los pulmones extirpados fueron analizados ex vivo utilizando el imager in vivo para determinar la intensidad de la fluorescencia a través de la expresión de Venus. Por último, los pulmones de los ratones fueron homogeneizados, y los lanzadores virales y la estabilidad se determinaron mediante el ensayo de placa. Las placas fueron evaluadas por la fluorescencia directa de Venus, mediante inmunomancha utilizando anticuerpos específicos para Nluc y por tinción violeta cristalina.
Las iAV de expresión de reporteros competentes para la replicación anteriormente expresan un solo gen de reportero, con mayor frecuencia ya sea una proteína fluorescente o bioluminiscente, como sustituto de la infección viral y la replicación. Sin embargo, BIRFLU, es capaz de expresar ambos tipos de genes de reportero sobre la infección viral. Para evaluar la correlación entre la bioluminiscencia (imágenes in vivo) y la fluorescencia (imágenes ex vivo) después de la infección por BIRFLU, los ratones BALB/c hembras de cinco a siete semanas de edad se infectaron simuladas con 1 x PBS o se inocularon con BIRFLU (106 PFU) intranasalmente . La actividad de Nluc (Figura4A)se evaluó mediante la administración del sustrato de Nluc inyectado retroorbitalmente a los 3 días posteriores a la infección utilizando un instrumento de imagen in vivo. Elegimos evaluar la bioluminiscencia en el día 3 porque estudios anteriores indicaron que la replicación de IAV, incluyendo PR8, alcanza los picos entre los días 2 y 4 después de la infección24,54. Se monitorizó la bioluminiscencia (Figura4A,parte superior) y se utilizó para calcular el flujo total promedio (Flujo (log10 p/s) (Figura4A,inferior). Como se predijo, los ratones inoculados con BIRFLU mostraron una alta actividad de bioluminiscencia, pero no se detectó ninguna señal en ratones infectados por simulacros. A partir de entonces, se cosecharon los pulmones de los ratones infectados y se evaluó la expresión de Venus mediante imágenes ex vivo (Figura4B,superior). Además, se calculó la eficiencia radiante media de fluorescencia (Figura4B,inferior). Los pulmones de los ratones extirpados también se homogeneizaron paradeterminar los lanzadores virales y la estabilidad genética de BIRFLU in vivo (Figura 4C,D). La estabilidad genética de BIRFLU se analizó mediante el ensayo de placa utilizando los virus aislados de los pulmones de ratones y la microscopía fluorescente (Venus, superior), la inmunomancha (Nluc, medio) y la tinción violeta cristalina (abajo). BIRFLU recuperado de ratones pulmones fueron capaces de formar placas y expresa establemente ambos genes reportero (Figura4C). En particular, observamos una buena correlación entre la bioluminiscencia y las señales de fluorescencia con la replicación viral.
Figura 1: Representación esquemática de la estructura y los segmentos del genoma de la estructura y el genoma del IAV PR8 WT y BIRFLU. El IAV está rodeado por una bicapa lipídica que contiene las dos principales glicoproteínas virales hemagglutinina (HA; negro) y neuraminidasa (NA; azul). IAV contiene ocho segmentos de ARN de una sola cadena, sentido negativo(PB2, PB1, PA, HA, NP, NA, M y NS). Cada segmento viral contiene regiones no codificante (NCR) en los extremos de 3' y 5' (cajas negras). Además, en el extremo de 3' y 5' de los virales (v)RNA se encuentran las señales de embalaje, responsables de la encapidción eficiente de los ARNN en viriones nacientes (cajas blancas). Los segmentos y productos virales IAV PR8 HA y NS están indicados en negro. Las secuencias de Nluc, Venus y PTV 2A se indican en cajas rojas, verdes y rayadas, respectivamente. También se indica la representación esquemática de los segmentos HA y NS modificados que expresan Nluc y Venus, respectivamente, en BIRFLU. Esta figura ha sido adaptada de Nogales et al.55. Haga clic aquí para ver una versión más grande de esta figura.
Figura 2: Caracterización in vitro de BIRFLU. (A, B) Análisis de la expresión proteica por fluorescencia directa e inmunofluorescencia. Las células MDCK se infectaron o infectaron (MOI 0.1) con virus PR8 WT o BIRFLU. Las células infectadas se fijaron a 18 h después de la infección para visualizar directamente la expresión de Venus mediante microscopía fluorescente directa y para visualizar la expresión Nluc (A) y VIRAL NP (B) utilizando anticuerpos específicos e inmunofluorescencia indirecta. Los núcleos se mancharon con DAPI. Se muestran imágenes representativas (aumento de 20x). Barras de escala a 100 m. (C, D) Cinética de crecimiento de PR8 WT y BIRFLU. La actividad Nluc (C) y los valoradores virales (D) en los sobrenatantes de cultivo de tejido de células MDCK infectadas (MOI 0.001) con los virus WT y BIRFLU PR8 se evaluaron en los momentos indicados después de la infección. Los datos representan los medios : SD de los triplicados. Los lanzadores virales fueron determinados por el ensayo de enfoque inmune (FFU/ml). La línea de puntos indica el límite de detección (200 FFU/ml). Esta figura ha sido adaptada de Nogales et al.55. Haga clic aquí para ver una versión más grande de esta figura.
Figura 3: Representación esquemática para el estudio de BIRFLU en ratones. La expresión de los genes reporteros de Nluc y Venus se evaluó en ratones infectados con 1 x 106 PFU de BIRFLU utilizando imágenes in vivo o ex vivo. Brevemente, el día 1, 5 a 7 semanas de edad, los ratones hembra según las ratones BALB/c fueron infectados por simulacros (1x PBS) o inoculados con 1 x 106 PFU de BIRFLU por vía intranasal. En el día 3 después de la infección, los ratones fueron anestesiados levemente usando isoflurano y el sustrato de Nluc se inyectó retro-orbitalmente. La señal Nluc se evaluó directamente utilizando imágenes in vivo. Inmediatamente después de la toma de imágenes, los ratones fueron eutanasiados y la expresión de Venus en pulmones enteros extirpado fue analizada utilizando imágenes ex vivo. Los pulmones de ratones recuperados fueron homogeneizados para evaluar la replicación viral y la estabilidad mediante el ensayo de placa. Las flechas indican correlación entre fluorescencia (Venus), inmunomancha (Nluc) y tinción violeta cristalina. Haga clic aquí para ver una versión más grande de esta figura.
Figura 4: Expresión de bioluminiscencia y fluorescencia in vivo. Los peratones hembras de BALB/c de cinco a siete semanas de edad fueron ininfectados (1x PBS) o inoculados con 1 x 106 PFU de BIRFLU por vía intranasal. En el día 3 después de la infección, se determinó la actividad de Nluc (A) en todo el ratón. Imágenes representativas de un solo ratón que muestra la escala de resplandor (p/seg/cm2/sr). Se cuantificaron los valores de resplandor de bioluminiscencia y se muestra el flujo total medio (Flujo (Log10 p/s). Después de la toma de imágenes de Nluc, se cosecharon los pulmones para obtener imágenes ex vivo (B). Se muestran imágenes representativas de pulmones enteros. Para cuantificar la expresión de Venus, se normalizaron los valores medios de las regiones de interés (ROI) a la autofluorescencia pulmonar de ratones infectados por burlas y se calcularon los cambios de pliegue. Para analizar la estabilidad genética de BIRFLU in vivo, los virus recuperados de los pulmones de ratones fueron analizados mediante ensayo de placa utilizando microscopía fluorescente (Venus, superior), inmunomanchado (Nluc, medio) y tinción violeta cristalina (abajo) (C). Se muestran imágenes representativas de un ratón. Para evaluar la replicación del virus, los pulmones enteros se homogeneizaron después de la toma de imágenes y se utilizaron para infectar las células MDCK y determinar los valoradores virales mediante el ensayo de placa (PFU/ml) (D). Las flechas indican correlación entre fluorescencia (Venus), inmunomancha (Nluc) y tinción violeta cristalina. Las barras representan la media de las tetas de los virus pulmonares. Esta figura ha sido adaptada de Logales et al.55. Haga clic aquí para ver una versión más grande de esta figura.
Medios y soluciones de cultivo de tejidos | Composición | Almacenamiento | Uso |
Medios de cultivo de tejidos: El medio de eagle modificado de Dulbecco (DMEM), el suero de la vid fetal (FBS) del 10 % y el 1% de la penicilina-estreptomicina-L-glutamina (PSG)(DMEM 10 % FBS 1% PSG). | 445 ml DMEM, 50 mL de FBS y 5 mL de 100x PSG. | 4 oC | Mantenimiento de células MDCK |
Medios de posinfección: DMEM 0,3% albúmina bovina (BA), 1% PSG (DMEM 0,3 % BA 1% PSG). | 491 ml DMEM, 4,2 ml de 35 % BA y 5 ml de 100x PSG | 4 oC | Mantenimiento de las células MDCK después de una infección viral |
10x Solución salina tamponada de fosfato (PBS) | 80 g de NaCl, 2 g de KCl, 11,5 g de Na2HPO4.7H2O, 2 g de KH2PO4. Añadir ddH2O hasta 1 L. Ajustar el pH a 7.3 | Temperatura ambiente | Para preparar 1x PBS |
1x PBS | Diluir 10pbS con ddH2O | Temperatura ambiente | Lavar las células |
Medios de infección: 1x PBS, 0.3% BA, 1% Penicilina-Streptomicina (PS) (PBS/BA/PS). | 487 mL 1x PBS estéril, 4,2 ml de 35% BA y 5 ml de 100x 1% PS (100 U/mL) | 4 oC | Infecciones virales |
Solución de fijación/permeabilización: 4% formaldehído, 0,5% tritón X-100 diluido en 1pbS. | 400 ml de formalina tamponada neutra 10%, 5 ml de Triton X-100 y 595 mL de 1x PBS | Temperatura ambiente | Corrección y permeabilización de células MDCK. |
Solución de bloqueo: 2.5% albúmina de suero bovino (BSA) en 1x PBS. | 2,5 g de BSA en 97,5 ml de 1pbS | 4 oC | Solución de bloqueo para inmunofluorescencia y ensayos de placa. |
Solución de dilución de anticuerpos (1% BSA en 1x PBS) | 1 g de BSA en 99 mL de 1x PBS | 4 oC | Dilución de anticuerpos primarios y secundarios. |
0.1% solución violeta cristalina | 1 g de cristal violeta en 400 ml de metanol. Añadir 600 ml de ddH2O | Temperatura ambiente | Manchado de células MDCK en ensayos de placa. |
Tosylsulfonyl phenylalanyl chloromethyl ketone (TPCK) -trató de trippsina | Preparar una solución de stock de 1.000x a 1 mg/ml en ddH2O | -20 oC | Para infecciones virales. |
Tabla 1: Medios y soluciones de cultivo de tejidos.
Los investigadores han confiado en los virus recombinantes que expresan a los periodistas como herramientas moleculares vitales para comprender y ampliar la comprensión actual de la replicación viral y la patogénesis26,27,28, 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 54. Los genes de reportero más comúnmente favorecidos son las luciferas y las proteínas fluorescentes, principalmente debido a los avances tecnológicos en su identificación, desarrollo de variantes mejoradas y detección por tecnologías de imagen43 , 44 , 45 , 46 , 47 , 48. Los virus de reporteros recombinantes se utilizan a menudo para acelerar los ensayos virológicos, estudiar la dinámica de los virus in vitro e in vivo, y para probar la eficacia de las vacunas y enfoques terapéuticos actualmente aprobados o nuevos26, 27,28,29,30,31,32,33,34,35, 36,37,38,39,40,41,54. Desafortunadamente, en el caso de IAV, estudios anteriores se limitaron a la expresión de un gen de un solo reportero, lo que dificulta el tipo de estudio que se podía llevar a cabo 26,27,28,29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 54. Para evitar esta limitación, hemos generado un IAV bi-reportero competente para la replicación que expresa una Nluc luciferasa y una proteína fluorescente Venus (BIRFLU).
En este informe, describimos la caracterización in vitro de BIRFLU y los enfoques experimentales para utilizar BIRFLU para realizar un seguimiento de la infección viral in vivo utilizando un modelo de ratón de infección por IAV. Expresión BIRFLU Nluc y Venus correlacionada con tituladores virales. Además, BIRFLU se mantuvo estable y continuó expresando ambos genes de reportero después de ser recuperados de los pulmones de ratones infectados. Este enfoque ofrece a los investigadores una excelente oportunidad para estudiar el IAV en células cultivadas y en modelos animales, incluyendo la identificación y desarrollo de nuevas alternativas terapéuticas para el tratamiento de infecciones por IAV.
Aunque BIRFLU se ha generado utilizando la columna vertebral de PR8, se podrían generar otros IAV recombinantes utilizando diferentes tipos, subtipos o cepas de tensión viral utilizando el mismo enfoque experimental. Asimismo, en este informe describimos los procedimientos experimentales para el uso de BIRFLU en un modelo de ratón de IAV. Sin embargo, BIRFLU podría ser una tecnología valiosa para evaluar la infección por IAV en otros modelos animales.
Los autores no tienen nada que revelar.
La investigación sobre el virus de la gripe en el laboratorio LM-S está parcialmente financiada por el Centro de Excelencia en La Gripe de Nueva York (NYICE) (NIH 272201400005C), miembro del contrato No de los Centros de Excelencia para la Investigación y Vigilancia de la Gripe (CEIRS) de NIAID. HHSN272201400005C (NYICE) y por el Programa de Investigación Médica Revisada por Pares (PRMRP) del Departamento de Defensa (DoD) otorgan W81XWH-18-1-0460.
Name | Company | Catalog Number | Comments |
12-well Cell Culture Plate | Greiner Bio-one | 665102 | |
24-well Cell Culture Plate | Greiner Bio-one | 662160 | |
6-well Cell Culture Plate | Greiner Bio-one | 657160 | |
96-well Cell Culture Plate | Greiner Bio-one | 655-180 | |
Adobe Photoshop CS4 | Adobe | This software is used in 3.1.10 and 4.4.7 | |
Bovin Albumin solution (BA) | Sigma-Aldrich | A7409 | Store at 4 ° C |
Bovin Serum Albumin (BSA) | Sigma-Aldrich | A9647 | Store at 4 °C |
Cell Culture dishes 100mm | Greiner Bio-one | 664-160 | |
ChemiDoc MP Imaging System | BioRad | This instrument is used in 4.4.7 | |
Crystal Violet | Thermo Fisher Scientific | C581-100 | Store at Room temperature |
Dounce Tissue Grinders | Thomas Scientific | 7722-7 | |
Dulbecco’s modified Eagle’s medium (DMEM) | Corning Cellgro | 15-013-CV | Store at 4 °C |
Fetal Bovine Serum (FBS) | Seradigm | 1500-050 | Store at -20 °C |
5 to 7 week-old female BALB/c mice | National Cancer Institute (NCI) | 555 | |
Isoflurane | Baxter | 1001936040 | Store at Room temperature |
IVIS Spectrum | PerkinElmer | 124262 | This instrument is used for in vivo imaging (4.2 and 4.3) |
IX81 Motorized Inverted Microscope | Olympus | Olympus IX81 | |
Living Image 4.7.2 software | PerkinElmer | This instrument is used for in vivo imaging (4.2 and 4.3) | |
Lumicount | Packard | This instrument is used for quantifying luciferase activity (3.2.6) | |
Madin-Darby Canine Kidney (MDCK) epithelial cells | ATCC | CCL-34 | |
Monoclonal Antibody anti-NP Influenza A Virus HB-65 | ATCC | H16-L10-4R5 | Store at -20 °C |
Nano-Glo Luciferase Assay Reagent | Promega | N1110 | This reagent is used to measure Nluc activity. Store at -20 °C |
Neutral Buffered Formalin 10% | EMD | 65346-85 | Store at RT |
Nunc MicroWell 96-Well Microplates | Thermo Fisher Scientific | 269620 | |
Penicillin/Streptomycin (PS) 100x | Corning | 30-00-CI | Store at -20 °C |
Penicillin/Streptomycin/L-Glutamine (PSG) 100x | Corning | 30-009-CI | Store at -20 °C |
Retiga 20000R Fast1394 Camera | Qimaging | Retiga 2000R | |
Scanner | HP | ||
Texas Red-conjugated anti-mouse -rabbit secondary antibodies | Jackson | 715-075-150 | Store at -20 °C |
Tosylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-treated trypsin | Sigma-Aldrich | T8802 | Store at -20 °C |
Triton X-100 | J.T.Baker | X198-07 | Store at RT |
Vmax Kinetic plate reader | Molecular Devices |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados