Method Article
寡核苷酸5′-三磷酸盐是基本生物学途径中无处不在的成分,并且在生物技术应用中的使用越来越多。在这里,我们描述了从标准自动合成技术制备的寡核苷酸开始,常规合成和纯化寡核苷酸5′-三磷酸的技术。
5′-三磷酸是一种在一生中发现的必需核酸修饰,在生物技术和合成生物学中越来越多地用作寡核苷酸的功能修饰。寡核苷酸5′-三磷酸历来通过酶法 在体外 制备。然而,这些方法仅限于天然RNA寡核苷酸,具有很强的序列偏好,并且倾向于产生异质产物。化学三磷酸化的新方法补充了通过亚磷酰胺化学自动合成寡核苷酸的成本降低以及现在可用的各种核苷酸修饰。因此,现在可以合成任意序列和长度的寡核苷酸三磷酸盐,并且任选地含有各种非天然修饰。
本文提出了使用水杨基氯酸磷和焦磷酸盐对寡核苷酸进行化学三磷酸化的适当方法和技术。该方法使用市售试剂,与标准固相合成方法制备的大多数寡核苷酸相容,可在寡核苷酸合成后2 h内完成,脱保护纯化前。展示了化学三磷酸化寡核苷酸作为催化RNA酶底物的两种用途,包括从非生物L-RNA三磷酸合成锤头核酶的镜像版本。
5′-三磷酸化形式的RNA在生物学中无处不在,因为它是由生命所有领域的RNA转录和许多RNA病毒生命周期中的RNA复制产生的。这些三磷酸盐作为真核生物中7-甲基鸟苷酸封端mRNA形成的底物,因此在蛋白质表达1中起着至关重要的作用。相反,三磷酸盐保留在细菌和病毒中;因此,RNA 5′-三磷酸被真核生物2,3,4,5,6,7中的先天免疫反应调节剂识别。在生物学之外,许多RNA连接酶核酶已经进化到在体外8中使用5′-三磷酸,并修饰用于诊断测定9,10,11,12,13,14,15。一种这样的核酶可用于L-RNA的模板依赖性合成,L-RNA是天然D-RNA的非生物学"镜像"对映异构体,来自小L-RNA寡核苷酸5′-三磷酸16,17,18。不同序列和骨架组成的三磷酸化寡核苷酸的常规制备对于研究这些系统至关重要。
在实验室中制备RNA 5′-三磷酸盐的最常用和最容易获得的方法是体外转录。然而,通过这种方法产生的RNA在序列和大小上受到RNA聚合酶的启动子和底物要求的限制。T7 RNA聚合酶和专用衍生物是用于此目的的最常见的聚合酶19,20,21,22。用这些酶制备的体外转录RNA必须用5′末端嘌呤启动,并且在前10个核苷酸23,24中强烈偏向嘌呤。此外,碱基或骨架修饰的核苷酸的酶促掺入充其量是低效的,并且通常不可能使用天然聚合酶,从而限制了产生寡核苷酸5′-三磷酸的机会,这些寡核苷酸由天然D-RNA以外的任何东西组成。另一个限制因素是,体外转录产生的RNA可以含有实质性的5'-和3'-异质性,并且在短于20 nt 23,24,25,26,27时作为极异质产物产生。
相反,通过固相亚磷酰胺合成制备的化学三磷酸化寡核苷酸28,29,30,31,32,33,34,35可用于制备3-50 nt长的寡核苷酸3-50 nt长,任何序列。此外,在5′-三磷酸化14,15,16,17,18,29,36之前,可以将大量可用于亚磷酰胺合成的核酸修饰添加到寡核苷酸中。其中许多方法使用磷酸化试剂水杨基氯酸磷,该试剂由路德维希和埃克斯坦开发,用于单核苷37的溶液相三磷酸化。用该试剂在固相上通过寡核苷酸5′-羟基的磷酸化在固相上实现,通过与焦磷酸盐反应和氧化转化为三磷酸盐,然后通过从固体载体中切割寡核苷酸的标准程序,脱保护和纯化(图1)28。
图1:合成寡核苷酸的三磷酸化方案。在第一步中,用SalPCl磷酸化寡核苷酸5ʹ-羟基。在下一步中,将5ʹ-水杨基亚磷酸酯与TBAP反应形成环状偏亚磷酸盐,然后在第三步中氧化以在DNA / RNA合成器氧化溶液(0.1M碘/吡啶/ H2O / THF)中生成环状5ʹ-三磷酸盐,其迅速水解以在同一溶液28,33中产生线性5ʹ-三磷酸盐,37.随后从固体CPG载体中裂解碱性裂解和MeNH2 /氨水溶液中寡核苷酸的脱保护将水解任何残留的环状偏磷酸盐为线性形式。缩写: SalPCl = 水杨基氯磷酸酯;TBAP = 三丁基焦磷酸铵;THF = 四氢呋喃;CPG = 可控孔隙玻璃;MeNH2 = 甲胺。请点击此处查看此图的大图。
尽管使用这种方法的早期发表的报告经常遭受产量低下和不良副产品28,37,38的困扰,但谨慎维护无水条件是常规获得高产量所必需的。这可以通过仔细制备试剂和使用由标准塑料部件组装的简单反应装置来实现。在这里,我们演示了寡核苷酸化学三磷酸化的适当步骤,包括试剂的制备,反应室的组装,三磷酸化反应以及随后的三磷酸化寡核苷酸的脱保护和纯化。还包括5′-三磷酸化寡核苷酸作为连接酶核酶的底物的代表性用途,用于合成具有天然D-RNA和非生物L-RNA骨架的较大核酸产物。
1. 在固体载体上自动固相合成5′-羟基寡核苷酸
2. 三磷酸化原料的制备
3. 三磷酸化装置的组装和使用
图2:三磷酸化装置。 在混合或反应过程中,装置(A)对氩气源(i)开放,并通过调节三通旋塞阀(ii)与空气密闭。试剂通过废注射器(v)从前厅(iii)吸入合成柱(iv)。通过将所有液体吸入废注射器(v)并将其丢弃来除去试剂。当装载试剂(B)时,三向旋塞阀(ii)向大气开放,试剂通过注射器和针头(vi)装入前厅(iii)。(C)组装的装置的照片,如(A)中设置的试剂混合和反应。 请点击此处查看此图的大图。
4. 合成5′-羟基寡核苷酸的柱上三磷酸化
5. 从固体支撑物、去保护和纯化中解脱出来
6. 三磷酸化寡核苷酸作为核酶自我复制的底物
注意: 32P是放射性同位素,应使用标准安全协议在实验室中使用放射性材料,并由相关环境健康和安全部门认证的放射性材料使用的研究人员执行以下步骤。作为替代方案,自复制核酶底物A可以用5′-荧光素标记14 合成并成像,如步骤7.9所示。
7. L-RNA的交叉手性拷贝
寡核苷酸应使用适合亚磷酰胺和自动DNA / RNA合成器的标准方案合成,使产物寡核苷酸从原始塑料合成柱中的固体载体中清除,去除5ʹ端二甲氧基三异质基以产生游离的5ʹ-羟基(第1节)。本演示中使用的所有寡核苷酸均以1,000 Å受控孔隙玻璃(CPG)树脂为固体载体,在0.2或1μmole尺度下进行制备。 材料表中提供了合成器色谱柱、树脂、试剂和亚磷酰胺的代表性实例。对于更大规模的反应,可能需要调整后续步骤中使用的体积和时间。
三磷酸化反应使用材料表中列出的标准市售组分在定制反应室(图2,第3节)的柱上进行,并遵循图1(第4节)28所示的方案。在三磷酸化过程中,必须严格保持无水的条件,并且所有溶剂和试剂必须事先在分子筛上制备,并在使用前完全干燥(第2节)。三磷酸化通常需要2小时才能发生,之后,可以根据标准的寡核苷酸脱保护和纯化程序(第5节)处理洗涤和干燥的柱子。
脱保护后,通过变性聚丙烯酰胺凝胶电泳(PAGE)纯化寡核苷酸三磷酸盐,通过UV背影显示单个主要产物带,可以从凝胶中切除和洗脱。对于短寡核苷酸,5′-三磷酸产物很容易从反应副产物中分离出来,如图 3A,B所示,如DNA三核苷酸5'-三磷酸,pppAAA和pppCCC以及L-RNA三核苷酸5ʹ-三磷酸pppGAA所示。对AAA和CCC DNA三聚体的5'-羟基和5'-三磷酸产物均进行切除和鉴定,并相应地标记在 图3A中。对于AAA DNA三聚体可见,额外的条带通常不包含足够的物质来回收和鉴定。然而,这些条带的存在与未纯化反应产物中的其他产物质量相关(图3C),通常代表5′-二磷酸盐,单磷酸盐和H-膦酸盐侧产物,如下所述。
在PAGE纯化后,可以使用粉碎和浸泡方法42 和随后的乙醇沉淀洗脱较大的寡核苷酸。然而,小于15 nt的寡核苷酸不能有效地乙醇沉淀,因此需要修改凝胶洗脱程序(步骤5.11.3)。 材料表 中列出的一次性尺寸排除列仅适用于长度超过10 nt的寡核苷酸。然而,我们发现,使用制造商推荐的方案可以有效地脱盐短至三聚体的寡核苷酸。然而,建议在脱盐短寡核苷酸时(如步骤5.6和5.11.3),以级分形式收集色谱柱洗脱液,并使用紫外可见分光光度计通过260nm处的吸光度鉴定产物级分。 材料表中 提供了针对较短的寡核苷酸优化的尺寸排阻柱作为替代选择。纯化后1μmole级寡核苷酸合成的最终收率为50-300 nmol。
三磷酸化可以通过质谱法确认,其中三磷酸化产物的质量比5'-羟基寡核苷酸大+239.94 Da,尽管经常观察到对应于5'-二-和单磷酸(+159.96和+79.98 Da)的材料的存在。也可以观察到质量为5'-OH质量+63.98 Da的5'-H-膦酸盐侧产物,并且该产物的高水平表明三磷酸化过程中的条件不够无水。在纯化之前,脱保护的寡核苷酸通常会显示所有这些产物(图3C),而纯化的材料将显示对应于5'-三磷酸产物以及5'-二磷酸和单磷酸盐的峰(图3D,E)。
由于电离过程中三磷酸的电离和破碎速率不同,仅质谱法通常不会严格测量5'-三磷酸盐纯度。为了测量最终产品的纯度,建议使用反相液相色谱法和串联ESI-MS(RP-LC/ESI-MS),特别是对于较长的寡核苷酸。通过 RP-LC/ESI-MS 对 D-RNA 5ʹ-三磷酸盐和 PPPGGACCGCAACUUA 的分析显示,典型的最终产品纯度为 20%,含有 20% 的 5ʹ-二磷酸,因为这两种物质在较长的寡核苷酸上存在时难以分离。
合成的5′-三磷酸寡核苷酸通常比生化研究中酶法制备的材料具有更好或更好的功能。在第6节中,作为示例,在RNA催化的自复制反应14,15,43,44,45中比较了合成或通过体外转录制备的5′-三磷酸14 nt RNA底物。核酶E催化底物A和B的连接,在能够指数增长的自催化反应中产生E的新拷贝(图5A)。通过体外转录制备E和32个P标记的A组分,如上所述,合成三磷酸化底物B或通过体外转录14制备。通过定期采集样品来监测自我复制反应的进展,这些样品通过变性PAGE进行分析并通过荧光/磷光凝胶扫描仪进行定量。根据逻辑增长函数计算的结果数据显示,转录或合成的B基质都支持指数增长,但合成B的产物量略高(图5B)。该结果可能反映了通过体外转录23,24制备的RNA的5′端的组成异质性。
化学三磷酸化还可以合成寡核苷酸三磷酸盐,这些三磷酸盐不能 在体外 或细胞中生物制备。在第7节中,由L-RNA组成的非生物寡核苷酸三磷酸盐,即第1-5节中制备的天然D-RNA的对映异构体,用作D-RNA"交叉手性"聚合酶核酶27.3t的底物(图6A),其以序列一般方式催化来自短L-RNA寡核苷酸5′-三磷酸的较长L-RNA产物的模板定向聚合。例如,核酶可以合成锤头自裂解基序的L-RNA版本(图6B)18。将纯化的L-RNA三核苷酸三磷酸盐与荧光素标记的L-RNA引物和L-RNA模板(图6C)结合,并与交叉手性连接酶反应。通过PAGE分析反应过程中的样品,并使用荧光/磷光凝胶扫描仪进行成像,以证明由模板编码的锤头核酶的L-RNA版本的合成(图6D)。
图3:三核苷酸5ʹ-三磷酸的纯化。 (A)DNA三核苷酸三脱氧腺苷酸(AAA,蓝色)和三脱氧胞苷(CCC,红色)的三磷酸化(通过UV反阴影可视化)的PAGE分析(通过UV反阴影可视化),故意超载以可视化次要副产物。5ʹ-三磷酸产物(ppp)和5'0-羟基(OH)起始物均被切除并用MALDI-MS鉴定。(B) L-RNA三核苷酸GAA三磷酸化的制备页,主要产物条带被ESI-MS切除并鉴定为5-三磷酸(ppp)。(C)MALDI-MS的粗反应产物在脱保护后和(D)纯化产物从(A)中。5ʹ-三磷酸 (Ppp; pppAAA 预计为 1,119 Da,观测到 1,118 Da; pppCCC 预期为 1,047 Da,观测到 1,046);标记5ʹ-二磷酸盐,5ʹ-单磷酸盐(p),5ʹ羟基(OH)和5ʹ-H-膦酸盐(Hp)。(E)从(B)中分离出的5ʹ-三磷酸产物的直接注入ESI-MS的去卷积质谱,并标记了已鉴定的峰(预期为1,181.6 Da,观察到1,181.0 Da)。还观察到5ʹ-二磷酸(pp)产物,以及三磷酸和二磷酸产物的钠离子峰(+22 Da)。常见的污染物峰用星号标记。为了便于比较,质谱被归一化为在每个光谱中测量的最高强度,并以相对于该值的百分比进行报告。缩写: PAGE = 聚丙烯酰胺凝胶电泳;马尔迪-MS = 基质辅助激光解吸/电离;ESI-MS = 电喷雾电离质谱。 请点击此处查看此图的大图。
图 4:6 nt 和 14 nt D-RNA 寡核苷酸三磷酸盐的分析 RP-LC。串联ESI-MS将两者的主要峰(~70%)鉴定为5ʹ-三磷酸(ppp),少量的5ʹ-二磷酸(pp)。简称:RP-LC=反相液相色谱法;nt = 核苷酸;ESI-MS = 电喷雾电离质谱。请点击此处查看此图的大图。
图5:通过化学合成或体外转录制备的寡核苷酸5ʹ-三磷酸底物的比较(A)自我复制核酶E代表RNA A和5'-三磷酸化RNA B。 (B)数据拟合于逻辑增长方程:[E] = a / (1 + b e-ct),其中a是最终产量,b是乙状化程度,c是指数增长率。两种反应的增长率相同,为1.14 h-1,而合成B反应的最终程度高出10%。
图6:(A)D-RNA 27.3t聚合酶核酶的交叉手性L-RNA聚合,其催化L-RNA的模板依赖性连接。(B)由27.3t合成的L-RNA产物形成锤头核酸内切酶基序的一部分。(C)使用生物素化的L-RNA模板(棕色),末端标记的L-RNA引物(品红色)和四个L-RNA三核苷酸三磷酸盐(青色)催化的L-RNA聚合,由27.3t催化,合成制备。(D) 在4小时和24小时对(B)的延伸产物进行PAGE分析,显示每个三核苷酸掺入到全长产物(黑点)。未反应的L-RNA引物作为参考标记物包括在内。缩写: PAGE = 聚丙烯酰胺凝胶电泳;M = 参考标记。请点击此处查看此图的大图。
这里描述的三磷酸化过程与使用标准亚磷酰胺化学的寡核苷酸合成大致相容。核苷亚磷酰胺应具有与 AMA39 中的快速脱保护相容的碱不稳定保护基团,包括亚磷酸盐上的标准β-氰乙基,以及核基的外环胺上的异丁酰基、二甲基甲脒基、乙酰基、苯氧基乙酰基或 4-异丙基苯氧基乙酰基。核糖2'-羟基应由甲硅烷基保护基团保护, 即叔丁基二甲基硅基(TBDMS)或三异丙基硅氧基甲基(TOM)40,41。碱基不稳定的扁豆酰氧基甲基(PivOM)基团也被报道为与化学三磷酸化30相容。
已经描述了用于化学三磷酸化合成寡核苷酸28、29、30、31、32、33、34、35的多种方法。我们发现使用路德维希-埃克斯坦试剂37的三磷酸化是最容易获得的试剂之一,不需要专门的试剂合成,也不需要专门的设备。通过这种方法制备的寡核苷酸5′-三磷酸已被常规用作RNA连接酶核酶的底物,包括使用酶不可及的L-RNA寡核苷酸三磷酸来实现这种"镜像"核酸14,16,17,18的模板依赖性合成和复制.该方法也适用于制备小的5′-三磷酸化茎环RNA,它们是脊椎动物6,7中先天免疫应答的有效激活剂。
路德维希-埃克斯坦试剂水杨基氯磷酸盐37对水具有高度反应性,可有效清除在将试剂溶解到寡核苷酸柱之前引入的任何水。然而,在此之后,5′-磷酸化的寡核苷酸将优先与焦磷酸盐上引入系统的任何水发生反应,在处理28,37,38后形成5'-H-膦酸盐侧产物。三磷酸化试剂和三磷酸化反应室的仔细制备可确保不会形成该侧产物。对于溶剂干燥,4 Å型分子筛由大多数寡核苷酸合成试剂公司以各种品牌与大多数有机溶剂兼容的特氟龙袋中预先包装。通常不需要额外的预防措施,例如在无水气氛下的手套箱中进行三磷酸化。
5′-磷酸化寡核苷酸与TBAP反应形成环状5′-三偏磷酸中间体,然后使用寡核苷酸合成氧化剂溶液(水/吡啶/THF中的碘)将其氧化成环状的5′-三偏磷酸。应该注意的是,商业氧化剂溶液使用不同量的碘,并且必须使用高0.1 M的碘浓度以确保完全氧化成三磷酸盐。环状产物在同一溶液37中水解至最终的线性5′-三磷酸盐,如果需要与水以外的亲核试剂线性化,则必须使用替代的无水氧化剂溶液(参见下面的应用)33。然而,任何残留的环状偏磷酸盐将在随后的寡核苷酸的碱性脱保护过程中线性化。环状5′-三偏磷酸的水解仅产生线性而不是支链三磷酸37,46。
寡核苷酸脱保护通常不需要修改以适应5'-三磷酸化,但应采取一些预防措施。三磷酸盐在短暂暴露于碱性条件下相对稳定,但应注意不要将三磷酸盐暴露于AMA的时间超过必要的时间。应避免在65°C下保护需要在氨或AMA中更长时间治疗超过10分钟的组。当与其他亚磷酰胺保护基团相容时,更温和的处理,例如在室温下氨中2小时是可以接受的。硅烷保护合成RNA寡核苷酸的常用快速脱保护方法使用三氢氟化三乙胺和高温47;然而,在制备RNA 5′-三磷酸盐时应避免这种情况,因为发现长时间的酸性条件会加速三磷酸盐水解31,32。
制备性PAGE已被证明是5′-三磷酸化寡核苷酸的脱保护后纯化的最简单,最可靠的方法(图3 和 图4)。然而,制备性反相HPLC也可用于纯化三磷酸化产物。在通过质谱验证三磷酸化时,通常观察到5'-二磷酸和5'-单磷酸产物的存在。我们已经观察到在质谱分析过程中,通过化学合成或转录制备的高纯度材料发生了5'-三磷酸片段化,特别是如果仪器没有针对寡核苷酸的分析进行优化。然而,RP-LC分析通常显示10%-20%的5'-二磷酸侧产物存在于较长的5'-三磷酸化寡核苷酸中(图4)。三丁基焦磷酸铵的商业制剂可被多达20%的单磷酸盐污染,在三磷酸化过程中会产生5′-二磷酸盐作为副产物30,31。在内部仔细制备该试剂可以产生更纯净的TBAP库存31。然而,我们发现使用商业来源的TBAP磷酸化的寡核苷酸在酶促反应中用作底物时仍表现出可比或更大的反应性(图5B),与通过 体外 转录制备的材料相比。
路德维希-埃克斯坦试剂进一步使用寡核苷酸三磷酸化的一个值得注意的进一步用途是利用环状偏磷酸酯中间体33。如果随后的氧化步骤是用1M过氧化 叔丁基己烷进行的,己烷中通常用于无水条件下的寡核苷酸氧化,则亚磷酸盐的氧化发生在没有开环水解的情况下,产生环状偏磷酸盐。然后,该中间体可以与伯胺或醇亲核试剂反应,在磷酸γ修饰后产生5′-三磷酸盐。这些修饰包括添加由氨基磷酸酯键连接的亲脂性标签,这有利于通过RP-LC快速纯化三磷酸盐特异性,然后从三磷酸33中酸性水解标签。还可以引入磷酸γ位的荧光修饰,用作核酶催化连接反应15,33的实时荧光报告基因。
作者声明他们没有竞争的经济利益。
作者感谢格雷格·斯普林斯汀,娜塔莎·保罗,小查尔斯·奥莱亚,乔纳森·谢潘斯基和卡特里娜·特洪就化学三磷酸化反应的最佳实践进行的有益讨论,并感谢杰拉尔德·乔伊斯的有益评论。这项工作得到了美国国家科学基金会MCB 2114588的支持。
Name | Company | Catalog Number | Comments |
0.22 µm polyethersulfone syringe filter | MilliporeSigma | SLMP025SS | Syringe filter for removing crushed polyacrylamide gel particles (Section 5) |
0.22 µm PTFE syringe filter | MilliporeSigma | SLLG013SL | Syringe filter for removing CPG resin (Section 5) |
1 mL plastic syringes | ThermoFisher Scientific | 14-823-434 (BD 309659) | Components of triphosphorylation apparatus (sections 2–4) |
1,4-Dioxane, anhydrous | MilliporeSigma | 296309 | Triphosphorylation solvent (sections 2–4) |
2-Chloro-4H-1,3,2-benzodioxaphosphorin-4-one, Salicyl Phosphorochloridite (SalPCl) | MilliporeSigma | 324124 | Triphosphorylation reagent (sections 2–4) |
30 mL glass bottles | MilliporeSigma | 23232 | Bottles for preparing triphosphorylation solvents and TBAP solution (section 2) |
3-way Stopcock, polycarbonate/polypropylene | Bio-Rad Laboratories | 7328103 | Component of triphosphorylation apparatus (sections 2–4) |
40% acrylamide/bis-acrylamide solution, 19:1 | Bio-Rad Laboratories | 1610144 | For PAGE (sections 5–7) |
Acetonitrile, anhydrous, 100 mL | Glen Research | 40-4050-50 | Triphosphorylation solvent (sections 2–4) |
Ammonia-neutralizing Trap | ThermoFisher Scientific | ANT100 and ANS121 | For use with Speedvac DNA130 (section 5) |
Ammonium persulfate (APS) | Bio-Rad Laboratories | 1610700 | For PAGE, catalyst for acrylamide polymerization (sections 5–7) |
Aqueous ammonia, 28% | MilliporeSigma | 338818 | For preparing AMA deprotection reagent (section 5) |
Aqueous methylamine, 40% | TCI America | TCI-M0137 | For preparing AMA deprotection reagent (section 5) |
Automated DNA/RNA oligonucleotide synthesizer | PerSeptive Biosystems | Expedite 8909 DNA/RNA Synthesizer | any column-based synthesizer is acceptable (section 1) |
Bead-capture magnet | ThermoFisher Scientific | 12320D | For streptavidin bead capture (section 7) |
Bromophenol blue | Bio-Rad Laboratories | 1610404 | For PAGE urea loading buffer (section 5) |
Deep vacuum oil pump | ThermoFisher Scientific | VLP200-115 | For use with lyophilizer (section 5) |
Drierite dessicant, 10-20 mesh | MilliporeSigma | 737828 | Desiccant for storing triphosphorylation chemicals and equipment (sections 1–2) |
D-RNA 27.3t cross-chiral polymerase | prepared in house18 | 5′-GGUGGUGGAC GUGAUCAUUA CGGAUCACUA ACUCGUCAGU GCAUUGAGAA GGAGAAUAAA AUGCACAUAG GUCGAAAGAC CUUAUACAAG AACUGUAUCA CCGGAGGGCG AGCACCACC-3′ | For cross-chiral ribozyme reactions (section 7) |
D-RNA CPG solid supports, 1,000Å, prepackaged 1 µmole synthesis columns | Glen Research | 20-3404-41E, 20-3415-41E, 20-3424-41E, 20-3430-41E | representative, for D-RNA oligonucleotide synthesis (section 1) |
D-RNA TOM-protected phosphoramidites | ChemGenes | ANP-3201, 3202, 3203, 3205 | representative, for D-RNA oligonucleotide synthesis (section 1) |
Empty Expedite Synthesis Columns, 1µm | Glen Research | 20-0021-01 | Synthesis columns for use with Expedite DNA/RNA synthesizer (section 1) |
EPPS, N-(2-Hydroxyethyl)piperazine-N′-(3-propanesulfonic acid), solid | MilliporeSigma | E1894 | Ribozyme reaction buffer component (section 6) |
Ethylenediaminetetraacetic acid (EDTA), solid | MilliporeSigma | EDS | Divalent metal ion chelator for use in various buffers (sections 5–7) |
Filters for Expedite synthesis columns | Glen Research | 20-0021-0F | Expedite-style synthesis column filters, for use with empty synthesis columns (section 1) |
Fluorescent/phosphorescent gel scanner | Cytiva | Amersham Typhoon RGB, 29187193 | For visualizing analytical PAGE (sections 6–7) |
Formamide, deionized | VWR Life Science | 97062 | For PAGE formamide gel loading buffer (sections 6–7) |
Gel image quantitation software | Cytiva | ImageQuant TL | For quantifying scanned gel images (section 6) |
Glass desiccator | MilliporeSigma | CLS3121150 | Triphosphorylation solvent storage (section 2) |
L-RNA CPG solid supports, 1,000Å, bulk | ChemGenes | N-4691-10, N-4692-10, N-4693-10, N-4694-10 | L-RNA oligonucleotide synthesis (section 1) |
L-RNA hammerhead template | prepared in house18 | 5′-GCGCCUCAUC AGUCGAGCC-3′ | For cross-chiral ribozyme reactions (section 7) |
L-RNA primer | prepared in house18 | 5′-fluorescein-GGCUCGA-3′ | For cross-chiral ribozyme reactions (section 7) |
L-RNA TOM-protected phosphoramidites | ChemGenes | OP ANP-5201, 5202, 5203, 5205 | L-RNA oligonucleotide synthesis (section 1) |
Lyophilizer/Freeze Dryer | VirTis | Benchtop K | For concentrating oligonucleotides (section 5) |
Magnesium Chloride Hexahydrate, solid | MilliporeSigma | M2670 | For ribozyme reactions (sections 6–7) |
N,N-Dimethylformamide, anhydrous | MilliporeSigma | 227056 | Triphosphorylation solvent (section 2) |
NAP-25 Desalting column (Sephadex G-25 resin) | ThermoFisher Scientific | 45000150 | Disposable gravity-flow size exclusion chromatography columns containing Sephadex G-25 resin (section 5) |
Non-coring stainless steel needle, 20 G | ThermoFisher Scientific | 14-815-410 | Needles for piercing rubber septa (sections 2–4) |
Oligonucleotide extinction coefficient calculator | Integrated DNA Technologies | OligoAnalyzer Tool | Nearest-Neighbor Model Short Oligonucleotide 260nm extinction coefficient calculator (section 5) |
Oxidizer solution, 0.1 M Iodine in THF/pyridine/water | ChemGenes | RN-1456 | Triphosphorylation reagent (section 4) |
PAGE plates | Timberrock/CBS | NGP-250-BO and NO | For PAGE (sections 5–7) |
PAGE power supply | Bio-Rad Laboratories | PowerPac HV 1645056 | For PAGE (sections 5–7) |
PAGE spacers and combs (analytical) | Timberrock/CBS | VGS-0725 and VGC-0714 | For PAGE (sections 6–7) |
PAGE spacers and combs (preparative) | Timberrock/CBS | VGS-3025R and VGC-3001 | For PAGE (section 5) |
PAGE stand | Timberrock/CBS | ASG-250 | For PAGE (sections 5–7) |
Parafilm M | ThermoFisher Scientific | 13-374-12 (Bemis PM999) | Wax sealing film for triphosphorylation apparatus (sections 2–4) |
PCR thermocycler | Bio-Rad Laboratories | C1000 Touch Thermalcycler | For cross-chiral ribozyme reactions (section 7) |
PD 10 Desalting column (Sephadex G-10 resin) | MilliporeSigma | GE17-0010-01 | Disposable gravity-flow size exclusion chromatography columns containing Sephadex G-10 resin, for oligonucleotides < 15 nt (section 5) |
Phosphor screens | Cytiva | 28956480 | For visualizing 32P-labeled RNA (section 6) |
Phosphoramidite synthesis reagents | Glen Research | 30-3142-52, 40-4050-53, 40-4012-52, 40-4122-52, 40-4132-52, 40-4060-62 | representative, for standard RNA/DNA synthesis (section 1) |
Polypropylene screw-cap sealable tube | MilliporeSigma | BR780752 | 1.5 mL microcentrifuge tubes with screw-cap and silicone O-ring, for safe AMA deprotection (section 5) |
Pyridine, anhydrous | MilliporeSigma | 270970 | Triphosphorylation solvent (section 2) |
Reverse-phase liquid chromatography/electrospray ionization mass spectrometry (RP-LC/ESI-MS) | Novatia | n/a | Commercial service for LC/MS specializing in oligonucleotides (section 5) |
Rubber Septa (ID x OD 7.9 mm x 14 mm), white | MilliporeSigma | Z564702 | Septa for preparing triphosphorylation solvents and TBAP (section 2) |
Self-replicator ribozyme E | prepared in house14 | 5′-GGAAGUUGUG CUCGAUUGUU ACGUAAGUAA CAGUUUGAAU GGUUGAAGUA UGAGACCGCA ACUUA-3′ | For self-replicator ribozyme reactions (section 6) |
Self-replicator substrate A | prepared in house14 | 5′-32P-GGAAGUUGUG CUCGAUUGUU ACGUAAGUAA CAGUUUGAAU GGUUGAAGUA U-3′-OH | For self-replicator ribozyme reactions (section 6) |
Self-replicator substrate B, transcribed | prepared in house14 | 5′-pppGAGACCGCAA CUUA-3′ | For self-replicator ribozyme reactions (section 6) |
Small Drying Traps, 4 Å molecular sieves | ChemGenes | DMT-1975 | Drying traps for DNA/RNA synthesizer phosphoramidites and triphosphorylation reagents (sections 1–2) |
Sodium Chloride (NaCl), solid | MilliporeSigma | S7653 | Salt for use in various buffers (sections 5–7) |
Sodium Hydroxide (NaOH), solid | MilliporeSigma | S8045 | Salt for use in various buffers (sections 5–7) |
Statistical data-fitting software | GraphPad | Prism | For fitting data from analytical PAGE to kinetic models (section 6) |
Streptavidin-coated magnetic beads | ThermoFisher Scientific | 65002 | For capturing biotin-labeled RNA in cross-chiral ribozyme reactions (section 7) |
Sucrose | MilliporeSigma | 84097 | For PAGE urea loading buffer (section 5) |
TBE running buffer, 10x | ThermoFisher Scientific | AAJ62788K3 | For PAGE (sections 5–7) |
Tetrabutylammonium Fluoride, 1.0 M solution in Tetrahydrofuran | Aldrich | 216143 | For removing 2′-silyl protecting groups (section 5) |
Tetramethylethylenediamine (TEMED) | Bio-Rad Laboratories | 1610801 | For polymerizing acrylamide for PAGE (sections 5–7) |
Tributylamine | MilliporeSigma | 90781 | Triphosphorylation reagent (section 2) |
Tributylammonium pyrophosphate (TBAP) | MilliporeSigma | P8533 | Triphosphorylation reagent (section 2) |
Tris base | MilliporeSigma | T6666 | Buffering agent for use in various buffers (sections 5–7) |
TWEEN20 polysorbate detergent | MilliporeSigma | P7949 | Neutral detergent for use with magnetic beads (Section 7) |
Urea | MilliporeSigma | U5378 | For PAGE and gel loading buffer (sections 5–7) |
UV-Vis spectrophotometer | ThermoFisher Scientific | NanoDrop 2000, ND2000 | For measuring oligonucleotide concentrations (section 5) |
Vacuum centrifuge | ThermoFisher Scientific | Savant Speedvac DNA130-115 Vacuum Concentrator | For removing AMA and THF (section 5) |
Xylene cyanol | Bio-Rad Laboratories | 1610423 | For PAGE urea loading buffer (section 5) |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。