Method Article
* 这些作者具有相同的贡献
单纤维记录是一种有效的电生理技术,适用于中枢和周围神经系统。随着与附着的坐骨神经制备完整的DRG,检查传导失效的机制。这两种方案都有助于了解周围神经系统与疼痛的关系。
单纤维记录是过去几十年中一种经典而有效的电生理技术,因为它在中枢和周围神经系统的神经纤维中有着特殊应用。这种方法特别适用于背根神经结膜(DRG),这是主要感觉神经元,表现出神经过程的伪单极结构。沿着斧子传递的动作电位的模式和特征在这些神经元中是可记录的。本研究使用体内单纤维记录来观察完全Freund的佐剂(CFA)处理大鼠的坐骨神经的传导失败。由于不能使用体内单纤维记录来研究底层机制,DRG神经元的贴片夹-记录在附加的坐骨神经的完整DRG的制剂上进行。这些记录揭示了在CFA处理的动物中,传导失败与DRG神经元后极化电位(AHP)的上升斜率之间的正相关关系。体内单纤维记录方案允许通过测量传导速度和监测某些疾病的神经纤维异常情况来对神经纤维进行分类。附加外周神经的完好 DRG 允许在大多数生理条件下观察 DRG 神经元的活动。最后,单纤维记录与完整DRG的电生理记录相结合是检查镇痛过程中传导失败作用的有效方法。
沿神经纤维的信息的正常传输保证了神经系统的正常功能。神经系统的异常功能也反映在神经纤维的电信号传输中。例如,通过比较干预应用1前后神经传导速度的变化,可以对中枢脱骨髓病变的脱骨髓程度进行分类。很难在细胞内记录神经纤维,除了特殊制剂,如鱿鱼巨型斧子2。因此,电生理活性只能通过单纤维的细胞外记录进行记录。单纤维记录作为传统的电生理方法之一,其历史比其他技术要长。然而,尽管该方法应用广泛,但掌握这种方法的电生理学家较少。因此,需要详细介绍单光纤记录的标准协议,以便进行适当的应用。
虽然各种贴片夹技术主导了现代电生理学研究,但单纤维记录在记录神经纤维的活动方面仍然发挥着不可替代的作用,尤其是纤维以神经纤维的外在感。位于背根结节(DRG)的感官细胞体。这里使用单纤维记录的优点是,体内纤维记录提供了很长的观察时间,能够记录临床前模型中对自然刺激的反应,而不会干扰细胞内环境3,4.
近二十年来,越来越多的研究研究了神经纤维5沿线的复杂功能,传导失败,被定义为沿着斧子的神经脉冲传递不成功的状态,存在于许多不同的外围神经6,7。在我们的调查中,传导失败的存在是沿着C纤维8调制持续感知输入的一种内在的自我抑制机制。在高乳腺4、9的条件下,这种传导失败显著减弱。因此,针对传导失败所涉及的因素可能代表神经病痛的新疗法。为了观察传导失败,应根据单纤维记录的连续放电尖峰记录和分析点火模式。
为了彻底了解传导失效的机制,有必要根据子极性解剖特性,确定斧子的传输特性,或者更确切地说,确定DRG神经元的膜特性。以前在这一领域的许多研究都进行了分离的DRG神经元10,11,这可能是不可行的研究传导失败,由于两个障碍。首先,在解散过程中使用各种机械和化学方法来释放DRG神经元,这可能导致不健康的细胞或改变神经元的表型/特性,并混淆结果。其次,附着的外周神经基本消除,传导失效现象在这些准备中无法观察到。因此,对具有附加神经的完整DRG神经元的准备已经改进,以避免上述障碍。
目前的议定书遵循了《美国公共卫生服务关于人道照料和使用实验室动物的政策指南》,第四军医大学动物实验伦理委员会批准了该议定书。
1. 动物
2. 在 Vivo 单光纤录制
3. 传导故障的测量
4. 制备与坐骨神经相连的无损DRG
单光纤记录协议的结果取决于光纤解剖的质量。体内实验的动物必须在良好的状态,以保持神经躯干健康,便于解剖(见讨论部分的建议)。在许多情况下,在纤维上提供药物需要药物应用浴。图1说明了体内单纤维记录是如何操作的(图1A),并给出了一个经典记录,从CFA处理的动物的坐骨神经(图1B)。
以下实验调查了CFA处理动物的传导失败的存在。这项调查基于以下假设:沿感知C纤维的传导失败是一种常见现象,在超纤维化条件下,传导失败的程度显著减弱,这得到了我们以前的研究4,8,9,12。图2A显示,在正常动物中观察到C纤维传导失败。然而,与对照相比,在CFA注射到足部后,CFA引起的高失性发生后,传导失败的程度显著降低(图2B)。这些数据表明,在炎症性疼痛的CFA模型中,疼痛相关多模态感知C-纤维的传导失败是减量的。
为了在传导失败期间检查细胞内机制,使用附加坐骨神经制备完整的DRG(图3A,B)。图 3C显示,在刺激系列中,对重复刺激的反应峰值堆积在以前的超极化电位 (AHP) 上,导致以下 AHP 的上升斜率减小(图 3C,D).AHP在小型DRG神经元中的存在可能激活超极化激活,循环核苷酸调制(HCN)通道13,14,15。AHP的累积效应在传导失败的发生中起着一定的作用。因此,我们假设阻塞HCN通道会显著增强传导失效效应。以下实验使用HCN通道的阻滞器ZD7288。连续记录显示,ZD7288以浓度相关的方式存在传导失败。内展显示指定间隔的扩展跟踪。观察了CFA处理动物小DRG神经元的传导失败与AHP上升斜率之间的正相关关系(图3E)。
图1:大鼠坐骨神经体内单纤维记录。(A) 单纤维记录的示意图,指示记录区域 (R)(在拆分用于录制的灯丝之前,此处移除了皮质脊柱和杜拉母体)、药物应用 (D)、刺激 (S) 和 CFA 的部位注射。(B) 代表记录的坐骨单纤维表现出补品点火模式。这个数字已由Wang等人修改, 请点击此处查看该图的较大版本。
图2:与对照大鼠相比,CFA治疗的大鼠的传导失败减弱。(A) 控制大鼠为响应 10-Hz 电刺激而发射的单 C 纤维的原始连续记录。每 20 次扫描显示一次(连续扫描以 2 秒的间隔进行),并从上到下显示。内动显示了具有代表性的行动潜力。(B) 记录来自CFA注射大鼠的单一C纤维,以响应与小组A相同的刺激。这个数字已由王等人9日修改。请点击此处查看此图的较大版本。
图3:使用附加坐骨神经的完整DRG制剂测量C纤维传导失败。(A) 说明 DRG 制剂的设置和位置的原理图.SE:刺激电极;SN:坐骨神经;FM:荧光显微镜;重新:记录电极。(B) 在40x视角下观察到的整个DRG样本,使用微电极(右影)修补一个小DRG神经元。(C) 在控制条件下对5-Hz刺激的连续发射反应的连续记录,或从CFA治疗的大鼠的小直径DRG神经元中给下不同浓度的ZD7288。内展显示指定录制期间的扩展跟踪。黑点表示尖峰故障。(D) 用于测量 AHP 上升坡度的代表性痕迹.上升斜率等于最大和最小 AHP 电压 (mV) 之间的振幅差除以持续时间(刺激间隔,以秒为单位)。左侧面板显示更大的上升斜率(从标有"*"的面板 C 中的第一条曲线开始),右侧面板显示 ZD7288 应用(125 μM) 之后面板 C 中标有"+"的第四条曲线的较小上升坡度。(E) 传导失效程度与AHP在响应不同浓度ZD7288时的上升斜率之间的关系。[ 和 ] P < 0.05 与控制。这个数字已由王等人9日修改。请点击此处查看此图的较大版本。
虽然最近的研究已经实现了DRG神经元在体内16的钙成像,从单个DRG受体进行体内贴片夹记录仍然极具挑战性。因此,在体内单纤维方法对疼痛场是持续重要的。本协议中的单光纤记录允许客观地观察传导失效现象,并且该技术与当前研究中开发的体外制剂相结合,可以检查临床前模型中的受体兴奋性变化。单光纤录制协议的三个步骤对于成功录制至关重要。首先,注意动物的麻醉至关重要。在精细的体内记录实验中,包裹在29μm铂电极周围的薄纤维的长度仅为2-3毫米,在记录过程中很容易受到干扰。如果麻醉条件不是特别稳定,动物的微小运动可能导致电生理活动记录失败。第二,必须不断用石蜡覆盖制剂。这种操作的目的是保持纤维的活动。一个适当的记录槽通常使用动物的皮肤构造。为了防止石蜡漏油,可以使用超级胶水加固槽壁,必要时应添加石蜡油。在整个测试过程中,纤维不能干燥。最后,必须健康地维护神经干周围的环境。记录区域周围总是有一些液化液,这种灌注是高质量录音的障碍。光纤活动的振幅将继续下降,并最终与导致记录故障的极端基线噪声无法区分。需要自制的注射器管深入槽底,吸出液化液。有时,浸泡在盐水中的半干棉球也是有帮助的。
本研究应用了CFA模型,在CFA注射后产生足部炎症和高脂肪。为了研究周围止痛放电的特性以及潜在的机制,实验中不使用镇痛药,这是疼痛研究的一项常规做法,并经IACUC/Ethics委员会批准。本研究引入了一种体内单纤维记录技术,以观察在具有重复性电刺激的感知C纤维中发生的传输过程的变化。结果表明,在高失态条件下,传导失败程度显著减弱,但由于贴片夹紧技术困难,无法利用单纤维记录来研究其基础机制。C 纤维。因此,利用附加的坐骨神经制备完好的DRG,检测出小直径DRG神经元的传导失败与膜电位变化之间的关系。使用这种制剂的配片夹代替单光纤记录,探索了产生传导失败的AHP相关机制。使用该协议,虽然只能选择几个表面神经元,但DRG神经元水平的传导失败程度仍然能够被记录,即使使用药物。
DRG有两个外膜:皮面脊柱和杜拉母体。必须使用发簧钳去除 dura 母体,并且必须消化皮面脊柱(适度消化,不像在单 DRG 细胞分离中使用的系列),以确保贴片夹电极能够到达 DRG 细胞的表面形成密封;否则,不可能获得贴片夹录制。与DRG加神经切片相比,目前的方法更完整地保留了外周神经输入,并确保DRG神经元的贴片夹记录很容易实现。该协议具有广阔的应用前景,有助于增进对周围神经系统疼痛的理解,如研究不同慢性疼痛模型中不同DRG神经元的电生理变化17 ,18和分子机制基础异常自发活性在DRG与骨髓化或未骨髓化的斧子19,20。
与传统的分离结结法相比,这里呈现的带附坐骨神经的完整DRG的制备具有许多优点,因为DRG的结构在制备中基本未断。因此,它模拟了体内的真实条件,为生理活动提供了一个较好的微环境。与分离的DRG制剂相比,与分离的DRG制剂相比,完整的DRG的制备产生的神经元损伤更少,因为后者的过程使用更多的消化酶和外部物理作用(例如,剪切和吹气细胞),这对细胞造成更多的损害。大多数电生理学研究仍然对分离的DRG神经元21,22进行,解结过程本身损害细胞,导致神经元23异常超激。该协议的另一个优点是,细胞外电生理活动也得到了,因为神经投影仍然存在,这允许研究在一个尖峰和躯体DRG自发之间的相互作用放电。最后,这种制备保留DRG神经元和卫星胶质细胞,只有DRG神经元留在解散协议中。卫星胶质细胞是维持DRG微环境的关键,是保护单个DRG神经元的屏障24,这些细胞值得进一步研究。
作者没有什么可透露的。
这项工作得到了国家自然科学基金(31671089和81470060)和陕西省社会发展科学技术研究项目(2016SF-250)的资助。
Name | Company | Catalog Number | Comments |
Instruments and software used in single fiber recording | |||
Amplifier | Nihon kohden | MEZ-8201 | Amplification of the electrophysiological signals |
Bioelectric amplifier monitor | ShangHai JiaLong Teaching instrument factory | SZF-1 | Monitor firing process via sound which is transformed from physiological discharge signal |
Data acquisition and analysis system | CED | Spike-2 | Software for data acquisition and analysis |
Electrode manipulator | Narishige | SM-21 | Contro the movement of the electrode as required |
Hairspring tweezers | A.Dumont | 5# | Separate the single fiber |
Isolator | Nihon kohden | SS-220J | |
Memory oscilloscope | Nihon kohden | VC-9 | Display recorded discharge during |
Experiment | |||
Stereomicroscope | ZEISS | SV-11 | Have clear observation when separate the local tissue and single fiber |
Stimulator | Nihon kohden | SEZ-7203 | Delivery of the electrical stimuli |
Von Frey Hair | Stoelting accompany | Delivery of the mechanical stimuli | |
Water bath | Scientz biotechnology Co., Ltd. | SC-15 | Heating paroline to maintain at 37 °C |
Instruments and software used in patch clamp recording | |||
Amplifier | Axon Instruments | Multiclamp 700B | Monitors the currents flowing through the recording electrode and also controls the stimuli by sending a signal to the electrode |
Anti-vibration table | Optical Technology Co., Ltd. | Isolates the recording system from vibrations induced by the environment | |
Camera | Olympus | TH4-200 | See the neurons in bright field; the controlling software allows to take pictures and do live camera image to monitor the approach of the electrode to the cell |
Clampex | Axon | Clampex 9.2 | Software for data acquisition and delivery of stimuli |
Clampfit | Axon | Clampfit 10.0 | Software for data analysis |
Electrode puller | Sutter | P-97 | Prepare recording pipettes of about 2μm diameter with resistance about 5 to 8 MΩ |
Glass pipette | Sutter | BF 150-75-10 | |
Micromanipulator | Sutter | MP225 | Give a precise control of the microelectrode |
Microscope | Olympus | BX51WI | Upright microcope equipped with epifluorescence for clearly observe the cells which would be patched |
Origin | Origin lab | Origin 8 | Software for drawing picture |
Perfusion Pump | BaoDing LanGe Co., Ltd. | BT100-1J | Perfusion of DRG in whole-cell patch clamp |
Other instruments | |||
Electronic balance | Sartorius | BS 124S | Weighing reagent |
pH Modulator | Denver Instrument | UB7 | Adjust pH to 7.4 |
Solutions/perfusion/chemicals | |||
Calcium chloride | Sigma-Aldrich | C5670 | Extracellular solution |
Chloralose | Shanghai Meryer Chemical Technology Co., Ltd. | M07752 | Mixed solution for Anesthesia |
Collagenase | Sigma-Aldrich | SLBQ1885V | Enzyme used for clearing the surface of DRG |
D (+) Glucose | Sigma-Aldrich | G7528 | Extracellular solution |
Liquid Paraffin | TianJin HongYan Reagent Co., Ltd. | Maintain fiber wetting | |
Magnesium sulfate | Sigma-Aldrich | M7506 | Extracellular solution |
Potassium chloride | Sigma-Aldrich | P3911 | Extracellular solution |
Protease | Sigma-Aldrich | 62H0351 | Enzyme used for clearing the surface of DRG |
Sodium bicarbonate | Sigma-Aldrich | S5671 | Extracellular solution |
Sodium chloride | Sigma-Aldrich | S5886 | Extracellular solution |
Sodium phosphate monobasic | Sigma-Aldrich | S0751 | Extracellular solution |
Sucrose | Sigma-Aldrich | S0389 | Extracellular solution |
Urethane | Sigma-Aldrich | U2500 | Mixed solution for Anesthesia |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。