Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University
Dissolved oxygen (DO) measurements calculate the amount of gaseous oxygen dissolved in surface water, which is important to all oxygen-breathing life in river ecosystems, including fish species preferred for human consumption (e.g. bluegill and bass), as well as decomposer species critical to the recycling of biogeochemical materials in the system.
The oxygen dissolved in lakes, rivers, and oceans is crucial for the organisms and creatures living in it. As the amount of dissolved oxygen drops below normal levels in water bodies, the water quality is harmed and creatures begin to die. In a process called eutrophication, a body of water can become hypoxic and will no longer be able to support living organisms, essentially becoming a “dead zone.”
Eutrophication occurs when excess nutrients cause algae populations to grow rapidly in an algal bloom. The algal bloom forms dense mats at the surface of the water blocking out two essential inputs of oxygen for water: gas exchange from the atmosphere and photosynthesis in the water due to the lack of light below the mats. As dissolved oxygen levels decline below the surface, oxygen-breathing organisms die-off in large amounts, creating an increase in organic matter. The excess organic matter causes an increase in the oxygen-breathing decomposer populations in the benthic zone, which further depletes the remaining dissolved oxygen levels during the metabolic decomposition activity. Once the oxygen levels become this low, mobile oxygen-breathing species (e.g. fish) will move away, leaving no aerobic life in the water and creating a dead zone.
The Azide-Winkler titration method uses titration to determine the concentration of an unknown in a sample. Specifically, sodium thiosulfate is used to titrate iodine, which can be stoichiometrically related to the amount of dissolved oxygen in a sample.
The Azide-Winkler method is used to measure DO on site, where surface water is collected. Manganese(II) sulfate and potassium hydroxide are added to the sample, and the dissolved oxygen in the sample oxidizes the manganese and forms a brown precipitate. Azide is added in the form of a purchased alkaline iodide-azide reagent to correct for the presence of nitrites, which are found in wastewater samples and can interfere with the Winkler oxidation procedure.
MnSO4 + 2 KOH Mn(OH)2 + K2SO4
4 Mn(OH)2 + O2 + 2 H2O 4 Mn(OH)3
Sulfuric acid is then added to acidify the solution, and the precipitate dissolves. Under these conditions, the iodide from the alkaline iodide-azide reagent in the solution is converted into iodine.
2 Mn(OH)3 + 3 H2SO4 Mn2(SO4)3 + 6 H2O
Mn2(SO4)3 + 2 KI 2 MnSO4 + K2SO4 + 2 I2
Thiosulfate is then used to titrate the iodine in the presence of an added starch indicator.
4 Na2S2O3 + 2 I2 2 Na2S4O6 + 4 NaI
4 moles of S2O32- 1 mole of O2
At the endpoint of this titration, the blue solution will turn clear. The amount of dissolved oxygen in the sample is quantified in direct proportion to the amount of thiosulfate required to reach the endpoint.
X mL S2O3 X mg/L O:
1. Sample Dissolved Oxygen Measurement
Figure 1. A sample after the alkaline iodide-azide reagent has been added and mixed, showing floc formation at the top of the sample before settling.
Figure 2. A sample with dissolved floc after addition of sulfuric acid.
Figure 3. A sample after addition of sodium thiosulfate displaying a pale straw color.
Figure 4. A sample showing the blue color after the starch indicator is added and mixed.
A dissolved oxygen level of 6 mg/L is sufficient for most aquatic species. Dissolved oxygen levels below 4 mg/L are stressful to most aquatic animals. Dissolved oxygen levels below 2 mg/L will not support aerobic aquatic life (Figure 5).
The maximum amount of oxygen that can be dissolved in water varies by temperature (Table 1).
DO measurements in mg/L are converted to % saturation using water temperature and the conversion chart below (Figure 6).
DISSOLVED OXYGEN LEVELS (% SATURATION)
Excellent: 91 – 110
Good: 71 – 90
Fair: 51 – 70
Poor: < 50
Figure 5. DO measurements are converted to % saturation using the water’s temperature. The water’s temperature on the top horizontal axis and the measured DO value on the bottom horizontal axis. Use a ruler to draw a line between the two values and record where the line meets the middle diagonal axis for % saturation.
Figure 6. A dissolved oxygen level of 6 mg/L is sufficient for most aquatic species. Dissolved oxygen levels below 4 mg/L are stressful to most aquatic animals. Dissolved oxygen levels below 2 mg/L will not support fish and below 1 mg/L will not support most species.
Temp. (°C) | DO (mg/L) | Temp. (°C) | DO (mg/L) | Temp.(°C) | DO (mg/L) | Temp.(°C) | DO (mg/L) |
0 | 14.60 | 11 | 11.01 | 22 | 8.72 | 33 | 7.16 |
1 | 14.19 | 12 | 10.76 | 23 | 8.56 | 34 | 7.16 |
2 | 13.81 | 13 | 10.52 | 24 | 8.40 | 35 | 6.93 |
3 | 13.44 | 14 | 10.29 | 25 | 8.24 | 36 | 6.82 |
4 | 13.09 | 15 | 10.07 | 26 | 8.09 | 37 | 6.71 |
5 | 12.75 | 16 | 9.85 | 27 | 7.95 | 38 | 6.61 |
6 | 12.43 | 17 | 9.65 | 28 | 7.81 | 39 | 6.51 |
7 | 12.12 | 18 | 9.45 | 29 | 7.67 | 40 | 6.41 |
8 | 11.83 | 19 | 9.26 | 30 | 7.54 | 41 | 6.41 |
9 | 11.55 | 20 | 9.07 | 31 | 7.41 | 42 | 6.22 |
10 | 11.27 | 21 | 8.90 | 32 | 7.28 | 43 | 6.13 |
Table 1. Maximum amounts of oxygen that can be dissolved in water by temperature.
Slow-moving rivers are particularly vulnerable to low DO levels, and in extreme cases, these DO levels can lead to hypoxic conditions, creating “dead zones” where aerobic life is no longer supported by a body of water (Figure 7). Once plants and animals die-off, the build-up of sediment that occurs can also raise the riverbed, allowing plants to colonize over the water and could lead to the loss of the river all together (Figure 8). Surface waters at higher altitudes are also more vulnerable to low DO levels, as atmospheric pressure decreases with increasing altitude, and less oxygen gas is suspended in the water.
Low DO levels support life forms considered unappealing or unfit for human use, including leeches and aquatic worms (Oligochaeta).
Figure 7. Map of dissolved oxygen concentrations across the Louisiana shelf showing the dead zone region.
Figure 8. Photograph of the Caspian Sea showing severe eutrophication in the north end.
Skip to...
Videos from this collection:
Now Playing
Environmental Science
55.7K Views
Environmental Science
81.1K Views
Environmental Science
49.4K Views
Environmental Science
12.6K Views
Environmental Science
22.0K Views
Environmental Science
53.1K Views
Environmental Science
89.6K Views
Environmental Science
35.8K Views
Environmental Science
38.8K Views
Environmental Science
26.4K Views
Environmental Science
30.0K Views
Environmental Science
125.4K Views
Environmental Science
29.4K Views
Environmental Science
215.7K Views
Environmental Science
16.5K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved