Method Article
Here, a new method that allows the conversion of adult skin fibroblasts into insulin-secreting cells is presented. This technique is based on epigenetic conversion, does not involve the use of retroviral vectors nor the acquisition of a stable pluripotent state. It is therefore highly promising for translational medicine applications.
Regenerative medicine requires new, fully functional cells that are delivered to patients in order to repair degenerated or damaged tissues. When such cells are not readily available, they can be obtained using different approaches that include, among the many, reprogramming and trans-differentiation, with advantages and limitations that are specific of the different techniques. Here a new strategy for the conversion of an adult mature fibroblast into an insulin-secreting cell, arbitrarily designated as epigenetic converted cells (EpiCC), is described. The method has been developed, based on the increasing understanding of the mechanisms controlling epigenetic regulation of cell fate and differentiation. In particular, the first step uses an epigenetic modifier, namely 5-aza-cytidine, to drive adult cells into a "highly permissive" state. It then takes advantage of this brief and reversible window of epigenetic plasticity, to re-address cells toward a different lineage. The approach is designated "epigenetic cell conversion". It is a simple and robust way to obtain an efficient, controlled and stable cellular inter-lineage switch. Since the protocol does not involve the use of any gene transfection, it is free of viral vectors and does not involve a stable pluripotent state, it is highly promising for translational medicine applications.
Основной задачей регенеративной медицины является генерирование новых функциональных клеток, которые могут быть использованы для ремонта или замены поврежденного, выродились ткани. Переделка легко доступные взрослые клетки в новые, путем преобразования их из одного типа клеток в другой, является особенно привлекательным подход, особенно когда требуется популяция клеток не обильные или трудно получить доступ. Тем не менее, взрослые клетки удивительно стабильны. Они приобретают их дифференцированное состояние путем постепенного ограничения в их возможностях и, как только они достигают зрелого терминала специализации, они стабильно сохраняют его 1.
В последние годы был разработан целый ряд протоколов, которые позволяют перепрограммировать к плюрипотентности соматической клетки (ИПС) достигается за счет принудительного экспрессии набор факторов транскрипции 2,3. В качестве альтернативы, преобразование клеток может быть получена путем прямого клонального трансдифференциации, представляя один 4 или сочетание факторов транскрипции 5-7. Эта стратегия не предполагает перехода через состояние де-дифференцированы , но требует высокой экспрессии специфических транскрипционных факторов 8.
Недавно мы разработали протокол обращения на основании кратковременном воздействии взрослых клеток к свойствам деметилирующий в цитидин аналоговой 5-азацитидина (5-аза-CR), ингибитор хорошо охарактеризованного ДНК-метилтрансферазы. Стадия деметилирования немедленно следует определенному протоколу 9-11 дифференциации , что позволяет получить необходимую терминальную фенотип. Этот метод способен превратить зрелых, дифференцированных клеток в клетки различного рода и имеет существенное преимущество, чтобы избежать как использование вирусных векторов и трансфекцию любых экзогенных факторов транскрипции. Приобретение стабильного плюрипотентного состояния, и связанная с ним повышенная восприимчивость к клеточной нестабильности также избежать.
Подробный протокол, который позволяет преобразование взрослых фибробластов кожи человека в полностью функциональные инсулин-секретирующих клеток представлена здесь. Тем не менее, стоит отметить, что этот метод был применен к различным типам клеток и положительным результатам, при решении клеток по отношению к различным путям дифференцировки. Кроме того, эпигенетическое преобразование было успешно использовано в человеческих и свиные виды 9-13, а также у собак (рукопись представлена) предлагая широкий эффективность и надежность подхода.
Примечание: Все процедуры, описанные ниже, должны выполняться под колпаком с ламинарным потоком в стерильных условиях. Убедитесь, что все процедуры культуры проводятся на терморегулирующие стадиях и клетки выдерживали при 37 ° C в течение их обработки.
1. Кожа Фибробласт Изоляция
2. Культура Фибробласт
3. Фибробласт Покрытие для эпигенетические преобразования
4. Увеличение Cell Пластичность Использование De-метилирующими агентом 5-аза-CR
5. Разграничение Протокол Поджелудочная
Создание первичной культуры от биопсии кожи
Биопсия кожи были вырезаны в небольших фрагментов и поместили в желатиновые чашки, предварительно покрытые. Через 6 дней, фибробласты начал расти из фрагментов ткани и образовали монослой клеток (рис 1А). Клетки показали типичную удлиненную форму и, как и следовало ожидать, отображается однородный иммунно-положительности фибробластами специфического маркера виментину (VIM, Фигура 1В).
Морфологические изменения и метилирование фибробластов кожи после воздействия 18 ч до 5-аза-CR
Чтобы получить успешный эпигенетическую превращение фибробластов в инсулин-секретирующих клеток, мы увеличили свою пластичность, используя де-метилирующего агента, 5-аза-CR. Фибробласты человека высевали на 0,1% желатином чашки , предварительно покрытые при концентрации 7,8 × 10 4 фибробластах / см 2. Через двадцать четыре часа после посева клеток WERE инкубировали с 1 мкм 5-аза-CR в течение 18 часов.
В конце этой обработки, обширное изменение клеточного фенотипа было видно (сообщение 5-аза-CR, Рисунок 2А). Типичная удлиненная морфология необработанных фибробластов (Т0, рис 2А), был заменен круглой или овальной формы и размер ячейки стал значительно меньше. Цитоплазме зернистый, уплощенные, и клетки были прилипший к поверхности культуры. Ядра появились более крупные и вакуолизированную, как следствие ослабленного структуры хроматина. По нашему опыту, присутствие этих морфологических изменений имеет важное значение и должны быть тщательно проверены в качестве маркера для эффективности лечения 5-аза-CR.
После 18 ч воздействия 5-аза-CR, резкое снижение глобального метилирования ДНК было также очевидно и наглядно демонстрируется уменьшенного интенсивности 5-methylcytidine иммунным окрашиванием ( Рисунок 2B).
Морфологические и функциональные изменения в процессе эпигенетической превращения фибробластов кожи в инсулин-секретирующих клеток
Для того, чтобы индуцировать дифференцировку панкреатических, 5-аза-CR Обработанные фибробласты подвергались трехступенчатого протоколу для поджелудочной индукции, сразу же после того, как период восстановления 3 ч.
На первой стадии, клетки культивировали в течение 7 дней в панкреатических базальной среде, дополненной активин А для содействия энтодермы обязательства. В этом интервале, клетки дополнительно уплощенные и постепенно начали организовывать в кластеры (7 -й день, Рисунок 3А). Впоследствии, панкреатический дифференцировки родословная была повышена с добавлением ретиноевой кислоты в течение 2-х дней. В ответ на это лечение, клетки переставить в форме сетчатой структуры и росли в четко различимых клеточных агрегатов (10 -й день, Рисунок 3А). Формирование кластеров рrocess возрастает со временем, и дополнительно стимулируется третьей и последней стадии, состоявшей из экспозиции клеток к B27, bFGF и ИТС. Это привело к набору все большего числа клеток , которые агрегируются в больших 3D колоний (20 -й день, Рисунок 3А). Примерно в 36 -й день, эти колонии появились как отдельные круглые структуры , напоминающие о типичных панкреатических островках в пробирке (36 -й день, Рисунок 3А).
Приобретение нового фенотипа EpiCC сопровождался постепенным увеличением глобальных уровней метилирования ДНК , которые вернулись к наблюдаемым в необработанных фибробластов (5 мК день 36 Рисунок 3б).
Через 36 дней после индукции поджелудочной железы, эффективность преобразования эпигенетическому была также продемонстрирована с помощью экспрессии типичных зрелых панкреатических маркеров, которые были первоначально незаметного в необработанных фибробластах (T0, Фигура 3В). Совместной локализации С-пептида (C-РЕР) с панкреатической и дуоденальной Гомеобоксный 1 (Pdx1) подтвердил добросовестной характер EpiCC как инсулин-продуцирующих них (36 -й день, фигура 3В). Кроме того, преобразованный функциональный фенотип клеток была продемонстрирована их способностью реагировать на 20 мМ глюкозы воздействия, которое представляет собой физиологический инициирующее соединение. Более подробно, EpiCC активно секретируется инсулина в культуральной среде через 1 час при D-глюкозы стимуляции. Ни один выпуск не было обнаружено после контакта с эквимолярным количеством L-глюкозы (рис 3C).
Рисунок 1: Выделение и характеристика фибробластов кожи человека (A) Представитель образ фибробластов , растущих из фрагментов ткани.. (B) Фибробласты отображать единую иммунно-позитивности их сpecific маркер виментин (VIM). Ядра окрашивали DAPI. (Масштаб баров, 100 мкм). Пожалуйста , нажмите здесь , чтобы посмотреть увеличенную версию этой фигуры.
Рисунок 2: Морфологические и метилирования изменения фибробластов кожи человека после того, как 5-аза-CR лечения (А) Типичные изображения необработанных фибробластов , показывающие вытянутую форму (T0), а также в 5-аза-CR Обработанные фибробласты , отображающие круглую или овальную морфологию, гранулируют. цитоплазма, и увеличенные и вакуолизированные ядер (Post 5-аза-CR). (масштаб баров, 100 мкм). (Б) уменьшение глобального метилирования ДНК может быть обнаружено после того, как 5-аза-CR обработки (сообщение 5-аза-CR). (Шкала баров, 50 мкм). Пожалуйста , клИк здесь, чтобы посмотреть увеличенную версию этой фигуры.
Рис . 3: Морфологические и функциональные изменения в процессе преобразования эпигенетической (A) Типичные картины морфологических изменений , происходящих при эндокринных поджелудочной железы дифференциации. Через 7 дней индукции, клетки человека постепенно организовать в кластеры (7-й день). В ответ на добавление ретиноевой кислоты, они переставить в форме сетчатой структуры и кластера в различимые агрегаты (10-й день). Эти образования прогрессировать со временем, рекрутинг клеток и агрегирование в больших 3D колоний (20 день). И, наконец, колонии становятся сферические структуры , которые имеют тенденцию отделяться и свободно плавают в культуральной среде, напоминающей типичные панкреатические островки в пробирке (36 -й день). (масштаб баров, 100 мкм). (B) После 36 дней в панкреатическихводства, глобальные уровни метилирования ДНК человеческого EpiCC возвращение к тем, которые наблюдаются в необработанных фибробластов (5 мК 36-й день). (Масштаб бар, 50 мкм). Совместной локализации Pdx1 с C-PEP обнаруживается в конце периода конверсии (36-й день), в то время как эти эндокринные панкреатические маркеры полностью отсутствуют в необработанных фибробластах (T0). (масштаб баров, 100 мкм). (С) EpiCC выделение инсулина в ответ на 20 мМ D-глюкозы и 20 мМ L-глюкоза экспозиции. Бары представляют собой среднее ± SD трех независимых повторах. Пожалуйста , нажмите здесь , чтобы посмотреть увеличенную версию этой фигуры.
Наименование материала / Оборудование | Количество (объем / объем) | Комментарии / Описание |
Хэма F-10 Питательная Mix | 40% | |
DMEM низкий уровень глюкозы | 40% | |
Замена KnockOut Serum | 10% | |
FBS | 5% | |
Антибиотик противогрибковым раствором | 1% | |
L-Глютамин решение | 1% | |
MEM Non-незаменимых аминокислот Решение | 1% | |
2-меркаптоэтанол складе | 1% | 2-меркаптоэтанол Массоподготовка: diluite 3,5 мкл 2-меркаптоэтанола в 5 мл стерильной PBS. Хранить в темном месте при температуре + 4 ° С. Примечание: Используйте в течение 2-х недель |
Нуклеозидные смесь акций | 1% | нуклеозида смешать препарат запаса: растворить 0,042 г гуанозина, 0,040 г аденозин, 0,036 г цитидина, 0,036 г уридина и 0,012 г Timidine в 50 мл стерильной воды. Плавятся при 50 ° С для растворения. Стерилизовать filtratионов и хранить при температуре +4 ° C |
ESGRO (LIF) | 0,1% | |
Рекомбинантного человеческого FGF основной (bFGF) акций | 0,1% | bFGF Массоподготовка: добавить 5 мл 0,1% бычьего сывороточного альбумина (BSA) в PBS при 25 мкг bFGF |
Таблица 1: Существенные решения.
Наименование материала / Оборудование | Количество (объем / объем) | Комментарии / Описание |
DMEM / F-12, | 93% | |
B-27 Дополнение Минус Витамин А | 2% | |
N-2 Дополнение | 1% | |
MEM Non-незаменимых аминокислот Решение | 1% | |
Антибиотикпротивогрибковое решение | 1% | |
2-меркаптоэтанол складе | 1% | 2-меркаптоэтанол Массоподготовка: diluite 3,5 мкл 2-меркаптоэтанола в 5 мл стерильной PBS. Хранить в темном месте при температуре + 4 ° С. Примечание: Используйте в течение 2-х недель |
L-Глютамин решение | 1% | |
БСА запас | 1% | Приготовление БСА складе: растворить 250 мг в 50 мл воды. Стерилизовать фильтрацией и хранят при +4 ° C. |
Таблица 2: Материальные решения.
Настоящая рукопись описывает метод, который позволяет преобразования фибробластов кожи человека в инсулин-продуцирующие клетки, через транзиторной и кратковременного воздействия 5-аза-CR, а затем тканеспецифическому индукции протокола. Такой подход позволяет перейти от мезодермы , связанных с эндодермы клеток, без принудительной экспрессии факторов транскрипции или микроРНК , ни приобретение стабильного плюрипотентного состояния, что делает клетки более нестабильны и склонны к ошибкам 14.
На первом этапе, клеточная пластичность увеличивается благодаря синтетическим эпигенетическому модификатором, который вызывает временное, обратимое разрешающее состояние, в терминально дифференцированных клеток. В частности, 5-аза-CR был использован для того, чтобы вызвать снижение глобального метилирования фибробластов кожи клеток. 5-аза-CR , как известно, непосредственно ингибируют метил-трансферазной активностью и препятствовании новому метилирование вновь синтезированной ДНК. Из-за его эффекта, эта молекуларанее использовался для повторной активации молчащие гены, а также для модификации дифференцировку состояния эукариотических клеток 15,16. В соответствии с этим, сообщение 5-аза-CR фибробласты кожи показал глобальную деметилирования ДНК (Фигура 2А), что указывает на 5-аза-CR способностью повышать пластичность в клетках , используемых для настоящих экспериментов. Это также согласуется с наблюдением , что 5-аза-CR облегчает экспрессию высокой пластичностью , связанных с маркером Oct-4 в нейросфера клетках (NSCs) 17. Тем не менее, интересно отметить, что пост 5-аза-CR фибробласты кожи возвращаются к своему первоначальному фенотипу после удаления 5-аза-CR. Действительно, ранее мы показали , что фибробласты вернулись к исходной культуральной среде, вниз регулируемую экспрессию плюрипотентности факторов , связанных с 9,10, что свидетельствует о том , что более высокое состояние пластичности приобрела, в ответ на эпигенетической модификатора, является временным, обратимым и не влечет за постоянные модификации тон клетки.
Заметные изменения в морфологии клеток сопровождается индукцию выше Пластичность положении (фигура 2А). Типичные удлиненные клеточные тела необработанных клеток фибробластов был заменен круглой или овальной формы клеток, представившей меньшие размеры и увеличение объема ядер, которые появились больше, чем у дифференцированных клеток. НИВА коррелируют это ядерное расширение в расслабленное хроматина структуры , описанной как особенность 18 плюрипотентности связанных. Присутствие вакуолизированных ядер и зернистой цитоплазмой, а также повышенной морфологии Свести, были очевидны. Все описанные морфологические изменения могут быть практически использованы в качестве маркера для успешного завершения первой части протокола преобразования; в нашем опыте, когда изменения присутствуют, 5-аза-CR действительно помогает клеткам приобретать более разрешительный состояние.
Можно воспользоваться этим переходным "высокими PERMISвременного окна спо- собности "водить клетки к совершенно иной фенотип. Настоящий протокол показывает, что пост 5-аза-CR фибробласты могут быть переадресован к клеточноподобных клеток поджелудочной железы бета, в ответ на конкретный дифференциации среды. Протокол, используемый позволяют клеткам переключаться из мезодермы производного типа клеток в популяции клеток, принадлежащих к роду энтодермы.
Инсулин, который был первоначально незаметного в необработанных фибробластов кожи, была положительной в конце протокола дифференцировки (фиг.3В). Это сопровождалось одновременным выражением других факторов, таких как Pdx1, участвующих в дифференциации всей поджелудочной железы - ее экзокринной, эндокринными и популяций клеток протоков, кроме специфического бета-клеточной линии. Это согласуется с предыдущей работой на мышиных эмбриональных стволовых клеток (ESC), указывающего, что собственно дифференцировка в бета-клетках была достигнута только тогда, когда незрелые клетки наслаивали флористикуг эндокринные клетки 19, предполагая , что локальная микроокружение обеспечивается панкреатических островков Лангерганса архитектуры имеет сильную функциональную роль.
Действительно, EpiCC достигли зрелого дифференцированный фенотип и показал способность реагировать на 20 мМ воздействие глюкозы (рисунок 3). Инсулин активно секретируется в культуральную среду после того, как 1 ч стимуляции D-глюкозы, подтверждая добросовестной характер EpiCC как инсулин-продуцирующих них (рис 3C).
Отдельным требованием для успешной процедуры является строгое сохранение клеток при 37 ° С, на всех этапах, в том числе их обработки в соответствии с стерильным ламинарным потоком и микроскопом. По нашему опыту, он также настоятельно рекомендуется подготовить реагенты свеже, до их использования в культуре и обновить среда строго в соответствии с протоколом. Эта операция должна проводиться под микроскопом, так как вещества, образующие агрегаты клетокможет отделяться от дна чашки для культивирования и теряется при средних изменений.
Эпигенетическое протокол преобразования также был успешно применен к свиные виды, а также собаки (рукопись представлена), используя один и тот же номер сотового / см 2 и концентрации реагента де-метилирующего , описанной для человека.
В заключение, протокол, который позволяет преобразование фибробластов кожи в другой тип клеток здесь представлены. Стратегия, описанная имеет преимущества в преобразовании клеток эпигенетически основе, а именно: возможность избежать состояния плюрипотентных, которые могли бы оставить позади клетки, способные вызвать рак; устранение экзогенных генетических факторов, которые могут привести к сохраняющиеся изменения в клетках. Эти преимущества делают данный подход весьма перспективен для применения поступательных медицины и позволяет пациенту специфической клеточной терапии.
Авторы заявляют, что у них нет конкурирующих финансовых интересов.
Эта работа была профинансирована Каррарези Фондом и Европейским фондом по изучению диабета (EFSD). GP поддерживается пост-Стипендия университета Милана. Авторы являются членами COST действий FA1201 Epiconcept: окружающая среда Epigenetics и Periconception и действий COST BM1308 Совместное использование надвигается на больших животных моделях (Салам). TALB является членом COST Action CM1406 Эпигенетическое химической биологии (EPICHEM).
Name | Company | Catalog Number | Comments |
Dulbecco's Phosphate Buffered Saline | Sigma | D5652 | PBS; for cell wash and solution preparation |
Antibiotic Antimycotic Solution | Sigma | A5955 | Component of Fibroblast, HP and Pancreatic media |
100 mm Petri dish | Sarstedt | 83.3902 | For Fibroblast isolation |
Porcine Gelatin | Sigma | G1890 | For dish coating |
Water | Sigma | W3500 | For solution preparation |
35 mm Petri dishes | Sarstedt | 83.39 | For Fibroblast isolation |
DMEM, high glucose, pyruvate | Life Technologies | 41966052 | For Fibroblast culture medium |
Fetal Bovine Serum | Life Technologies | 10500064 | FBS; Component of Fibroblast and HP media |
L-Glutamine solution | Sigma | G7513 | Component of Fibroblast, HP and Pancreatic media |
Trypsin-EDTA solution | Sigma | T3924 | For Fibroblast dissociation |
KOVA GLASSTIC SLIDE 10 WITH GRIDS | Hycor Biomedical | 87144 | Cell counting |
5-Azacytidine | Sigma | A2385 | 5-aza-CR, for increrase cell plasticity in fibroblasts |
Ham's F-10 Nutrient Mix | Life Technologies | 31550031 | For HP medium |
DMEM, low glucose, pyruvate | Life Technologies | 31885023 | For HP medium |
KnockOut Serum Replacement | Life Technologies | 10828028 | Component of HP medium |
MEM Non-Essential Amino Acids Solution | Life Technologies | 11140035 | Component of HP and Pancreatic Basal media |
2-Mercaptoethanol | Sigma | M7522 | Component of HP and Pancreatic Basal media |
Guanosine | Sigma | G6264 | Nucleoside mix stock component of HP medium |
Adenosine | Sigma | A4036 | Nucleoside mix stock component of HP medium |
Cytidine | Sigma | C4654 | Nucleoside mix stock component of HP medium |
Uridine | Sigma | U3003 | Nucleoside mix stock component of HP medium |
Thymidine | Sigma | T1895 | Nucleoside mix stock component of HP medium |
Millex-GS 0,22 µm | Millipore | SLGS033SB | For sterilizing of solution |
FGF-Basic (AA 1-155) Recombinant Human Protein | Life Technologies | PHG0261 | bFGF; Component of HP and Pancreatic Basal medium |
Bovine Serum Albumin | Sigma | A3311 | BSA; Component of Pancreatic Basal medium |
DMEM/F-12 | Life Technologies | 11320074 | For Pancreatic Basal medium |
B-27 Supplement Minus Vitamin A | Life Technologies | 12587010 | Component of Pancreatic medium |
N-2 Supplement | Life Technologies | 17502048 | Component of Pancreatic Basal medium |
Activin A Recombinant Human Protein | Life Technologies | PHG9014 | For Pancreatic medium |
Retinoic Acid | Sigma | R2625 | For Pancreatic medium |
Dimethyl sulfoxide | Sigma | D2650 | DMSO; for Retinoic Acid stock preparation |
Insulin-Transferrin-Selenium | Life Technologies | 41400045 | ITS; for Pancreatic Final medium |
Anti-Vimentin antibody | Abcam | ab8069 | For immunocytochemical analisys. Working dilution 1:100 |
4′,6-Diamidino-2-phenylindole dihydrochloride | Sigma | 32670 | DAPI. For immunocytochemical analisys. Working dilution 1 µg/ml |
5-Methylcytidine | Eurogentec | MMS-900P-B | For immunocytochemical analisys. Working dilution 1:500 |
Anti-C Peptide antibody | Abcam | ab14181 | For immunocytochemical analisys. Working dilution 1:100 |
Anti-PDX1 antibody | Abcam | ab47267 | For immunocytochemical analisys. Working dilution 1:500 |
Mercodia Insulin ELISA | Mercodia | 10-1113-10 | For insulin release detection |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены