Method Article
Здесь мы опишем простой способ структурирования свободного оксида кремния и германия с реактивными органического монослоя и продемонстрировать функционализации узорной подложках с малых молекул и белков. Подход полностью защищает поверхности от химического окисления, обеспечивает точный контроль над особенность морфологии, а также предоставляет доступ к химическому дискриминации моделей.
The development of hybrid electronic devices relies in large part on the integration of (bio)organic materials and inorganic semiconductors through a stable interface that permits efficient electron transport and protects underlying substrates from oxidative degradation. Group IV semiconductors can be effectively protected with highly-ordered self-assembled monolayers (SAMs) composed of simple alkyl chains that act as impervious barriers to both organic and aqueous solutions. Simple alkyl SAMs, however, are inert and not amenable to traditional patterning techniques. The motivation for immobilizing organic molecular systems on semiconductors is to impart new functionality to the surface that can provide optical, electronic, and mechanical function, as well as chemical and biological activity.
Microcontact printing (μCP) is a soft-lithographic technique for patterning SAMs on myriad surfaces.1-9 Despite its simplicity and versatility, the approach has been largely limited to noble metal surfaces and has not been well developed for pattern transfer to technologically important substrates such as oxide-free silicon and germanium. Furthermore, because this technique relies on the ink diffusion to transfer pattern from the elastomer to substrate, the resolution of such traditional printing is essentially limited to near 1 μm.10-16
In contrast to traditional printing, inkless μCP patterning relies on a specific reaction between a surface-immobilized substrate and a stamp-bound catalyst. Because the technique does not rely on diffusive SAM formation, it significantly expands the diversity of patternable surfaces. In addition, the inkless technique obviates the feature size limitations imposed by molecular diffusion, facilitating replication of very small (<200 nm) features.17-23 However, up till now, inkless μCP has been mainly used for patterning relatively disordered molecular systems, which do not protect underlying surfaces from degradation.
Here, we report a simple, reliable high-throughput method for patterning passivated silicon and germanium with reactive organic monolayers and demonstrate selective functionalization of the patterned substrates with both small molecules and proteins. The technique utilizes a preformed NHS-reactive bilayered system on oxide-free silicon and germanium. The NHS moiety is hydrolyzed in a pattern-specific manner with a sulfonic acid-modified acrylate stamp to produce chemically distinct patterns of NHS-activated and free carboxylic acids. A significant limitation to the resolution of many μCP techniques is the use of PDMS material which lacks the mechanical rigidity necessary for high fidelity transfer. To alleviate this limitation we utilized a polyurethane acrylate polymer, a relatively rigid material that can be easily functionalized with different organic moieties. Our patterning approach completely protects both silicon and germanium from chemical oxidation, provides precise control over the shape and size of the patterned features, and gives ready access to chemically discriminated patterns that can be further functionalized with both organic and biological molecules. The approach is general and applicable to other technologically-relevant surfaces.
1А. Первичное формирование монослоя на кремнии
1В. Первичное формирование монослоя на германий
2. NHS Субстрат Функционализация по кремния и германия
3. Малые молекулы Функционализация
4. Кислотные Полиуретановые Акрилат Stamp (PUA) подготовка
5. Каталитический Печать и SEM / АСМ анализ
6. Структурирование Белок и флуоресцентная микроскопия
7. Структурирование Белок и флуоресцентная микроскопия
8. Представитель Результаты:
Примером мягкой литографических каталитического структурирование нано показано на рисунке 7. Подход создает chemoselective узоры на оксид без кремния и германия, который может быть ортогонально функционализированных разнородных химических и биологических остатков. Реакция между NHS-functioanlized субстрата и каталитическая узорный штамп приводит к гидролизу фрагменты NHS в районах конформного контакта, уступая узорной бифункциональных подложки подшипник регионов NHS активируется и свободных карбоновых кислот. Из-за diffusионных свободной природы нашего метода, мы достигаем разрешение близко к фотолитографии. Например, на рисунке 7 показана 125 нм особенности, которые были равномерно воспроизводить по всей поверхности кремниевой подложки. Примечательно, что каталитический штамп может быть повторно использован несколько раз без потери эффективности.
Chemoselective функционализации узорной полупроводников с биомолекул открывает перспективу интеграции традиционных электронных материалов с высокой избирательностью биологических субстратах для применения в зондирования, диагностических и аналитических областях исследований. Примером такой функционализации показано на рисунке 8, где NHS узором кремния выборочно функционализированных белковых молекул. Воспользовавшись дифференциальной реакционной способности активировать и свободных карбоновых кислот, мы сначала наносится нитрилотриуксусная кислоты прекращается (НТА) гетеробифункциональных линкеров к NHS-функционализированных регионах, а затем использовать полученныйНТА-узорчатой поверхности в качестве шаблона для селективного крепления гекса-гистидина с меткой GFP. Рисунке 8б ясно показывает, дифференциальная интенсивность флуоресценции GFP между модифицированными и гидролизуется свободной карбоновой кислоты регионах. Размер и форма реплицировать функции согласуются между обеими поверхности NHS узорной (рис. 8а) и GFP-модифицированной поверхности (рис. 8, б), что подтверждает замечательную стабильность углерод-пассивируется поверхности и селективность штамповки подход. Протокол не ограничивается его с метками белка, и может быть использована для картины других биомолекул, включая ДНК и антител.
Рисунок 1. Общая схема представляющих каталитического печати микроконтактной
Рисунок 2. Структура би-слоистых мolecular системы на Ge и Si. Первичная монослоя алкил образует устойчивые Ge-C или Si-C связей с подложкой и обеспечивает химически инертны и плотной упаковкой система, которая защищает подстилающей поверхности от деградации. (Б) Вторичный overlayer формы устойчивые связи CC с первичным защитным слоем и обеспечивает функциональный терминал групп
Рисунок 3. Реакция схемы представляющая формирование первичных защитных монослоев на Si () и Ge (В)
Рисунок 4. Химическая функционализации первичных защитных монослоя с гетеробифункциональных доноров карбенового
Рисунок 5. Реакция схема демонстрирует незначительные изменения молекулы NHS-функционализированных субложках и соответствующие спектры XPS
Рисунок 6. Состав каталитического предварительно полимерные смеси, условий полимеризации, и СЭМ изображения узорной сульфокислоты модифицированных печать и соответствующие ПММА-Si мастера
Рисунок 7. РЭМ и АСМ-изображения трения узорчатого ЗРК на Si и Ge с кислой печать
Рисунок 8 Soft-литографических структурирование и функционализации пассивируется кремния с органическими и биологическими молекулами:.. SEM образ узорной NHS-модифицированный субстрат б. Флуоресцентная микрофотография подложки GFP изменен.
Представлен протокол формы или бескраскового печати микроконтактной, которые могут быть универсально применяться к любой подложке способна поддерживать простой и упорядоченной монослоев. В этом методе, штамп-иммобилизованных катализаторов переводов шаблон для опорной поверхности соответствующих функциональных групп. Поскольку процесс не зависит от чернил переход от штампа к поверхности диффузионного ограничения разрешение традиционных и реактивной μCP отпадает, что позволяет рутинного производства наноразмерных объектов. Включение первичной высоко упорядоченных молекулярных система обеспечивает полную защиту основного полупроводникового от окисления повреждения. В то же время, поддерживает метод иммобилизации громоздких реактивных групп за счет использования вторичных реактивных overlayer, вместе система обеспечивает как защиту, так и функционализации.
Техники начинается с формирования устойчивых углерод-поверхность облигаций позволяет химически инертный primarу монослоя, который служит эффективным барьером для образования оксидов. Формирование вторичного реактивного overlayer обеспечивает терминал NHS функциональные группы, которые служат точками крепления для различных химических и биологических остатков. Это устойчивое двухслойных молекулярной системы, впоследствии узорной используя наш подход каталитического μCP. Подход, представленный в данном исследовании, предлагает общий метод для подложек структурирование полупроводника с широким спектром органических и биологических материалов. Возможность создавать узорные органических полупроводниковых интерфейсы без дорогостоящих, сложных приборов предлагает многочисленные возможности в таких областях, как электроника, нанотехнологии, биохимия и биофизика.
Нам нечего раскрывать
Мы признаем, финансовой поддержке NSF награду CMMI-1000724.
Name | Company | Catalog Number | Comments |
Название реагента | Компания / модель | ||
---|---|---|---|
XPS-спектрометра | Кратос оси Ультра | ||
Атомно-силового микроскопа | Veeco D3100 | ||
SEM-FEG микроскопом | FEI XL30 | ||
Флуоресцентный микроскоп | Zeiss Axio Imager | ||
Heatblock | VWR | ||
Вакуум-насос | Бок Эдвардс | ||
Система для очистки воды | Millipore | ||
TESP кремниевых зондов | Veeco | ||
Кремний | |||
Давление Флаконы | Chemglass | ||
Вакуумный коллектор | Chemglass | ||
УФ-лампы | UVP | ||
Материал Stamp | См. ссылки 20 и 18 | ||
Фильтры PFTE шприц | VWR | ||
Nano Газа | Cyantek | ||
HCl | Сигма | ||
Этанол | Сигма | ||
Ацетон | Сигма | ||
HF | Сигма | ||
Хлорбензол | Сигма | ||
PCl5 | Сигма | ||
Пропенил хлорид магния | Сигма | ||
Октил Хлорид магния | Сигма | ||
Тетрахлорметана | Сигма | ||
Бок защищены этилендиамин | Сигма | ||
TFA | Сигма | ||
Натрия 2-mercaptoethanesulfonate | Сигма | ||
4N HCl раствор в диоксане | Сигма | ||
Лизин-N, N-diacetic кислоты | Сигма | ||
Et 3 N | Сигма | ||
DMF | Сигма | ||
NiSO 4 | Сигма | ||
NaP | Сигма | ||
NaCl | Сигма | ||
имидазол | Сигма | ||
PBS | Сигма |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены