Method Article
Plant defensins play an important role in plant defense against pathogens. For effective use of these antifungal peptides as antifungal agents, understanding their modes of action (MOA) is critical. Here, a live-cell imaging method is described to study critical aspects of the MOA of these peptides.
Small cysteine-rich defensins are one of the largest groups of host defense peptides present in all plants. Many plant defensins exhibit potent in vitro antifungal activity against a broad-spectrum of fungal pathogens and therefore have the potential to be used as antifungal agents in transgenic crops. In order to harness the full potential of plant defensins for diseases control, it is crucial to elucidate their mechanisms of action (MOA). With the advent of advanced microscopy techniques, live-cell imaging has become a powerful tool for understanding the dynamics of the antifungal MOA of plant defensins. Here, a confocal microscopy based live-cell imaging method is described using two fluorescently labeled plant defensins (MtDef4 and MtDef5) in combination with vital fluorescent dyes. This technique enables real-time visualization and analysis of the dynamic events of MtDef4 and MtDef5 internalization into fungal cells. Importantly, this assay generates a wealth of information including internalization kinetics, mode of entry and subcellular localization of these peptides. Along with other cell biological tools, these methods have provided critical insights into the dynamics and complexity of the MOA of these peptides. These tools can also be used to compare the MOA of these peptides against different fungi.
Plants have evolved a sophisticated innate immune system for defense against the microbial plant pathogens1. They express numerous gene-encoded host defense peptides with putative antimicrobial activity2. Indeed, many of these peptides display antimicrobial activity in vitro3. Defensins comprise one of the largest groups of host defense peptides in the plant kingdom4. These cysteine-rich, cationic peptides exhibit potent growth inhibitory activity against fungal and oomycete pathogens at micromolar concentrations and represent one of the first lines of defense against these pathogens5,6. Because of their potent antifungal activity, defensins can be exploited in agribiotechnological applications to generate disease resistant crops. Constitutive overexpression of several plant defensins has been shown to enhance disease resistance in the greenhouse and field tests of transgenic crops6. It is important to unravel the mechanisms of action (MOA) of these antifungal peptides in order to fully harness their potential as effective tools for crop protection. However, the MOA of these plant defensins are poorly understood. Current evidence suggests that they exhibit different MOA5,6,7,8. Some defensins act extracellularly on fungi and target specific cell wall/plasma membrane resident sphingolipids, disrupt membrane integrity and activate cellular toxicity pathways9,10,11. Recently, however, antifungal defensins that translocate into fungal cells have been discovered12,13,14. Some of these defensins bind to membrane-resident bioactive phospholipids, form oligomeric complexes and permeabilize plasma membranes15,16,17. Thus, some aspects of the MOA of plant defensins have been elucidated. However, the MOA of plant defensins likely involve a complex set of events which have not yet been identified and integrated into a comprehensive model. In particular, there remains a major gap in our understanding of the cellular targets of these peptides.
With recent advances in microscopy technologies and the development of new fluorescent probes, live-cell imaging techniques are now frequently used to study the MOA of antimicrobial peptides (AMPs). These techniques complement widely used methods such as immunolocalization, electron microscopy, atomic force microscopy or X-ray tomography18, which have been employed mostly to analyze the effects of antifungal peptides on the morphology and growth of fungal cells including the study of cell wall integrity, alterations in cell growth/branching patterns, as well as plasma membrane permeabilization and killing. Nevertheless, these studies have been limited to imaging cells at a certain time point after treatment with the peptides instead of performing time-lapse imaging on the same cells to monitor their dynamic changes in response to defensin challenge. In recent years, use of fluorescently labeled peptides in conjunction with live cell imaging using confocal microscopy has enabled real-time visualization of the dynamics of AMP–microbe interactions. Both naturally purified and chemically synthesized antifungal peptides can be tagged with fluorescent labels (e.g., DyLight, rhodamine, BODIPY, or Alexa Fluor based dyes) and directly observed during their interaction with cells by time-lapse live-cell imaging. The use of these labeled peptides has significantly increased our understanding of the different aspects of their MOA including mode of entry, subcellular localization, intracellular trafficking, and sites of antifungal action within living fungal cells18.
Recently, several studies have shown that various antifungal peptides including plant defensins are internalized by living fungal cells12,14,19,20. The MOA of these defensins likely involve interaction with intracellular targets. We have recently reported the antifungal action of a plant defensin MtDef4 in two ascomycete fungi, Neurospora crassa and Fusarium graminearum. MtDef4 was shown to use different pathways for fungal cell entry and subcellular localization in these fungi14. This study used chemically synthesized tetramethyl rhodamine (TAMRA)-labeled MtDef4 in combination with vital fluorescent dyes (the membrane selective dye, FM4-64; membrane-permeant dye, SYTOX Green; the cell death reporter dye, propidium iodide) and metabolic inhibitors. These analyses demonstrated the kinetics of the internalization of MtDef4, its mechanisms of intracellular transportation and its subcellular targets14.
Here, a protocol for live-cell imaging using confocal microscopy is presented. The protocol utilizes fluorescently labeled peptides in combination with vital fluorescent dyes to study plant defensin-fungal interactions, in particular, the pathways of translocation and the intracellular targets of defensins in fungal cells.
1. Labeling of Defensins with Fluorophores
2. Fungal Cultures and Growth Medium
3. Preparation of Conidial Suspension
4. Sample Preparation and Confocal Microscopy
Live cell imaging was carried out to track and compare the internalization and subcellular localization of two defensins, MtDef4 and MtDef5, from Medicago truncatula; in fungal cells. TMR-MtDef4 was chemically synthesized while MtDef5 was labeled with Dylight550 (Dylight550-MtDef5). Conidia were incubated with either defensin in combination with the membrane selective dye FM4-64. Figure 1 shows that TMR-MtDef4 has different trafficking pathways in N. crassa compared to F. graminearum. In N. crassa, the FM4-64 does not co-localize with the defensin but rather stains the membranes of vacuoles within which the defensin is sequestered. In F. graminearum, on the other hand, TMR-MtDef4 is not localized within any specific membrane bound organelles but is diffused in the cytoplasm (Figure 1).
Time lapse imaging of N. crassa cells labeled with both the fluorophore-labeled defensins used here (step 1.3) and FM4-64 shows that the defensin is able to enter fungal cells within 30 to 40 min of treatment (Figure 2). Upon entry into the cells, the fluorophore-labeled defensins used here (step 1.3) does not localize within any specific organelle but readily diffuses into the cytoplasm. This is in contrast to TMR-MtDef4 which enters N. crassa cells and remains trapped within the vesicular bodies even after 3hrs of treatment (Figure 1).
Figure 1: MtDef4 has different trafficking pathways in N. crassa and F. graminearum. TMR -MtDef4 localizes into vesicular bodies in N. crassa (A) but is diffused into the cytoplasm of F. graminearum (B). Conidia of N. crassa and F. graminearum were co-labeled with 1 µM and 12 µM TMR-MtDef4 (red), respectively, and with FM4-64 (green). Images were taken after 3 h of treatment. Please click here to view a larger version of this figure.
Figure 2: MtDef5 is internalized by N. crassa and diffuses inside the cells. DyLight550-MtDef5 is internalized into N. crassa cells and diffuses into the cytoplasm. N. crassa cells were co-labeled with 3 µM DyLight550-MtDef5 (red) and FM4-64 (green). Video was recorded for 2 h and 30 min. The delay between the addition of MtDef5 and starting image acquisition was 5 min. Scale bar = 4 µm. Please click here to view this video. (Right-click to download.)
In this study, a reliable live-cell imaging methodology with the use of fluorescently labeled antifungal defensins was described to study the kinetics of the internalization of these peptides into fungal cells and to determine their subcellular targets. This method is a powerful tool to visualize the dynamics of the interaction between defensins and fungal cells temporally and spatially.
Various methods have been used to study the internalization and intracellular localization of plant defensins in fungal cells. In these methods, defensin-treated cells are usually fixed and then processed for immunolocalization, electron microscopy, or X-ray tomography15,24,25. In addition, most of these techniques have been restricted to imaging cells at a specific time point rather than in real time using time-lapse imaging of the same living cells to monitor the dynamic changes taking place in response to defensin challenge. The ability to visualize, analyze and compare the dynamic events taking place in fungal cells in real time during the antifungal action of defensins makes this technique effective and exciting. In addition, it provides better understanding of how the dynamic intracellular localization of the peptide affects the morphogenesis of individual fungal cells with time.
One of the important aspects of this method is determining the subcellular targets using fluorescently labeled peptides along with vital fluorescent dyes (e.g. FM4-64;SG). Subcellular localization determines the environment in which a peptide operates, and represents an important step toward elucidating its interaction partners, function, and potential role(s) in the cellular machinery26,27.
A minor limitation of this technique is that the fluorescent peptide often exhibits reduced antifungal activity compared with the unlabeled peptide. If the peptide is labeled using a commercially available peptide labeling kit and shows complete loss of antifungal activity, a chemically synthesized peptide labeled with a small fluorophore at its N- or C-terminus is recommended.
In summary, live cell imaging of fungal cells challenged with a fluorophore-tagged defensin is an effective tool that can provide direct, high spatio-temporal resolution of the MOA of an antifungal defensin. For more precise MOA study, this technique can be combined with fluorescence lifetime imaging microscopy (FLIM)28 which will allow measuring the interaction kinetics of a peptide with other peptides, or with other labeled molecules or cellular constituents in real time. This will enrich our understanding of the ways antimicrobial peptides work thereby speeding up their development as antifungal agents for use in agriculture and medicine.
The authors have nothing to disclose.
We thank Dr. R. Howard Berg, Director of the Integrated Microscopy Facility at the Donald Danforth Plant Science Center, for his guidance and help with confocal microscopy. The authors have no conflict of interest to declare.
Name | Company | Catalog Number | Comments |
FM4-64 Dye | Life Technologies | T13320 | |
DyLight 550 Antibody Labeling Kit | Thermo Scientific | 84530 | |
Glass Bottom Microwell Dishes | Mat TeK | P35G-1.5-10-C | |
Mira cloth | EMD Millipore Corp | 475855-1R | |
SP8-X confocal microscope | Leica | ||
ImageJ software | FiJi | For Image analysis | |
Imaris software | Bitplane | For Image analysis |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone