Method Article
Here, we present a protocol to study the invasion of tumor cells into living normal tissue fragments in three dimensions. This organ culture technique is mainly applied to test potentially anti-invasive drugs in vitro.
The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and enables study of the effects of test compounds on tumor invasion. Cancer cells - either as aggregates or single cells - are confronted with fragments of embryonic chick heart. After organ culture in suspension for a few days or weeks the confronting cultures are fixed and embedded in paraffin for histological analysis. The three-dimensional interaction between the cancer cells and the normal tissue is then reconstructed from serial sections stained with hematoxylin-eosin or after immunohistochemical staining for epitopes in the heart tissue or the confronting cancer cells. The assay is consistent with the recent concept that cancer invasion is the result of molecular interactions between the cancer cells and their neighbouring stromal host elements (myofibroblasts, endothelial cells, extracellular matrix components, etc.). Here, this stromal environment is offered to the cancer cells as a living tissue fragment. Supporting aspects to the relevance of the assay are multiple. Invasion in the assay is in accordance with the criteria of cancer invasion: progressive occupation and replacement in time and space of the host tissue, and invasiveness and non-invasiveness in vivo of the confronting cells generally correlates with the outcome of the assay. Furthermore, the invasion pattern of cells in vivo, as defined by pathologists, is reflected in the histological images in the assay. Quantitative structure-activity relation (QSAR) analysis of the results obtained with numerous potentially anti-invasive organic congener compounds allowed the study of structure-activity relations for flavonoids and chalcones, and known anti-metastatic drugs used in the clinic (e.g., microtubule inhibitors) inhibit invasion in the assay as well. However, the assay does not take into account immunological contributions to cancer invasion.
Invasion is the hallmark of malignant tumors. This activity not only leads to the destruction of surrounding tissues, but is also implicated in metastasis formation. Since cancer patients die from invasion and metastasis, and efficient anti-invasive treatments are still scarce, laboratory assays that mimic the invasion of tumor cells have been developed. The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and allows to study the effects of test compounds on tumor invasion.
The rationale behind the use of the assay is the actual concept that tumors are ecosystems where the neoplastic cells continuously interact with their stroma (host cells and extracellular matrix), and that through these molecular interactions invasion is fine-tuned1. So, in the assay tumor cells are confronted with living embryonic chick heart fragments2, which serve not only as substrates for invasion by the tumor cells, but also as a source of different types of stromal cells and matrix elements. The chick heart contains myocytes, fibroblasts and endothelial cells, and the extracellular matrix is composed of laminin, fibronectin and different types of collagen. In this way, the three-dimensional organ culture technique covers many cellular and molecular interactions implicated in invasion of patient tumors.
The main advantage of the chick heart assay is the implementation of stromal effects. This aspect is more complete than in other invasion assays in vitro that are based on tumor cell invasion into non-living gels composed of basement membrane3 or interstitial matrix4 molecules. The concept of confrontation between tumor cells and normal living host tissue as found in organ culture experimentation has been introduced by several authors including Wolff and Schneider in France5, Easty and Easty in the United Kingdom6, and Schleich in Germany7. Two technical advantages of the chick heart invasion assay over the cited methods is that the volume of the fragments can easily be standardized, and that they remain contractile, which allows functional integrity monitoring during organ culture. Furthermore, avian embryos are preferred, because they can easily be dissected from the sterile content of the egg. The assay has conceptual resemblance to the chick chorioallantois membrane assay8 by offering a complex stromal surrounding to the tumor cells.
The assay has successfully been applied to distinguish between invasive and non-invasive cell variants from the same human tumors such as in the MCF-7 (mammary)9 and HCT-8 (colonic)10 cell line families. The technique is useful to test potentially anti-invasive compounds as well11,12. As further explained, it can be used for the establishment of structure-activity relations of small organic molecules. The assay does, however, not take into account the contribution of immunological cells to cancer invasion. It should be stressed that the technique cannot be considered as a high-throughput analysis system, because of the high number of manipulations, the limited numbers of assay runs (maximum 30 cultures) and the long turn-around time (about 1 month).
Figure 1. Schematic overview of the different assay steps. Please click here to view a larger version of this figure.
1. Preparation of Precultured Heart Fragments (PHFs)
Figure 2. Lifting the embryo out of the egg with an enucleation spoon. Please click here to view a larger version of this figure.
2. Preparation and Confrontation of Spheroidal Test Cell Aggregates
Figure 3. Aspiration of excess fluid around PHFs. Eight PHFs are placed on semi-solid agar in an embryological watch glass, and fluid excess is removed with a small triangular piece op filter paper. Arrows indicate the 8 individual PHFs. Please click here to view a larger version of this figure.
Figure 4. Small Erlenmeyer flasks on top of a gyrotory shaker. The flasks with 1.5 ml of culture medium are sealed with silicone stoppers equipped with a gas in - and outlet needle, and moved at 120 rpm at 37 °C. The gas is led by an inlet tubing (1) to the larger Erlenmeyer flask (2) filled with sterile Ringer’s salt solution, and further distributed (3 and 4) to smaller flasks containing culture medium with individual confronting pairs (5 and 6). Finally, spent gas is collected in a larger flask with a sterile water trap (7), from where it can escape into the air (8). The figure shows two sets of culture batteries on top of a home-made platform plate. Please click here to view a larger version of this figure.
3. Histology of the Confronting Cultures
4. Immunohistochemistry
5. Evaluation of the Assay Results
Note: In the present assay, invasion is defined as the progressive occupation of the PHF by the confronting test cells. Microscopic analysis of all consecutive sections from a confronting culture allows the reconstruction of the interaction between the test cell aggregates and the PHFs in three dimensions.
Figure 5. Examples of interactions between confronting cancer cells and PHFs. Histological sections of confronting cultures stained either with hematoxylin-eosin (left panels) or immunohistochemically with an antibody against chick heart (right panels). Interaction grades are defined in the protocol text. (H: heart tissue, T: tumor cells). Please click here to view a larger version of this figure.
6. Toxicity Assessment after Drug Treatments
7. Growth Assessment of Confronting Cultures
The histological sections as presented in Figure 5 show the end result of a number of successful assays. The sound histology of the cultures indicates viable cells and allows to interpret the interaction between tumor cells and normal tissue. Furthermore, no immune reaction from the normal tissue can be observed, which confirms the correct age of the chick embryos used e.g., before the immune rejection system is developed. There are no bacteria visible, which indicates absence of (gross) contamination during the culture period. Finally the rounded periphery of the sections confirms culture in suspension without signs of (temporary) adherence to the Erlenmeyer flask wall.
Many compounds have been tested in the assay. Drugs are generally delivered to the culture medium at the moment when the confronting PHF/tumor aggregate pairs are transferred to small Erlenmeyer flasks (step 2.7). Some were used as tools (known inhibitors and activators) to unravel pathways and effector molecules implicated in the process of tumor invasion. For other compounds which were structurally related, a quantitative structure-activity relationship (QSAR) was established based on the results of the chick heart invasion assay. So, for related polyphenolics a number of computational descriptors were used to enable the prediction of their anti-invasive activity in the assay. Over a period of 15 years 139 different analogs were tested for their possible anti-invasive effects in the assay, and their activities were grouped into 4 classes. A training and a validation set consisting of 93 and 46 of those polyphenolics respectively were randomly selected. By means of a QSAR artificial neural network the results of the validation set showed a clear correlation between the predicted and experimental anti-invasive activities17 (see Figure 6).
The data show the robustness of the chick heart invasion assay, since the correlation between predicted and experimental results was valid over 15 years, and confirmed in a recent (unpublished) prediction study with different polyphenolics. The confusion matrix presented in Figure 6 summarizes the weakness and the strength of the assay graphically: it gives a rough expression of the accuracy and the reproducibility. The interpretation of this graph should take into account the biological variability of living organ cultures, and the semi quantitative score of the invasion results.
Figure 6. External validation of a predictive QSAR model (artificial neural network) for the activity of small molecules in the chick heart invasion assay. The output of this model is the anti-invasive activity class of a compound. Four such classes have been defined, representing the lowest concentration at which a molecule exerts anti-invasive activity (i.e., invasion grade I or II) in the CHI assay: class 4 (active down to 1 µM), class 3 (10 µM), class 2 (100 µM) and class 1 (no anti-invasive activity at concentrations as high as 100 µM). The depicted confusion matrix compares predicted and experimentally determined anti-invasive activity classes for the compounds of the validation set. The validation set contains 46 compounds, the training set 93. Model predictions are based solely on descriptors calculated from molecular structure, and can thus be obtained for hypothetical compounds. This way, synthetic efforts can be focused on molecules with promising in silico activity. Please click here to view a larger version of this figure.
During the preparation of PHFs, the fragments may not stay in suspension but adhere to the vessel wall; this can be overcome by increasing the volume of the culture medium. If the number of PHFs is too low and their size is too big, decrease the volume of the culture medium. Failure of the test cells to aggregate may be due to fluctuations in the temperature or to microbial infection. Alternatively, an inability to aggregate may be an intrinsic characteristic of the cells. During attachment of the aggregates to PHF, poor adhesion may be overcome by extending the incubation period on top of the semisolid agar medium or by removing more fluid culture medium around the cultures by means of absorbing filter paper. Check also for microbial contamination in this case. Difficulties during sectioning may be due to disintegration of the paraffin blocks: this occurs when the storage period of the blocks has been too long (melt the paraffin once again). When sectioning artifacts occur, the integrity of the microtome knife and the absence of corpora aliena in the fixed cultures should be checked. Necrotic areas in the cultures are signs of poor culture conditions. If these areas are restricted to the center of the cultures, one should suspect the volume of the confrontations being too large. Proper selection of the volumes of the PHF and cell aggregates is indeed a critical factor. However, more generalized necrosis points towards inappropriate pH control, microbial contamination or fixation artifacts. Finally, when the sections appear too dark, the immersion period in hematoxylin may be too long, or the sections may be too thick (>8 µm).
Many variations on the chick heart assay have been applied successfully in invasion studies. These variations relate to the origin of the host tissue, the presentation of the confronting test cells, and the incubation conditions. Heart fragments from species other than chick18, and from tissues such as liver19, lung20, and brain21, have been examined. Instead of aggregates, biopsy specimens22monolayer fragments23, and cell suspensions have been used to confront with PHF in organ culture. Suspension cultures are sometimes replaced by static cultures on top of a semisolid substrate24, and serum-free confrontations have been shown to be feasible with certain types of cells25. Generally, the interaction is described in accordance with a semi quantitative scale26 however, computer-assisted automated image analysis systems have also been developed27,28. The latter aim to provide quantitative information on the extent of tumor cell invasion.
As the chick heart assay includes a living host tissue, the setup attempts to recapitulate the situation in vivo, and clearly is of some relevance compared with other systems in vitro (see introduction section). It should, however, be recognized that the assay fails to encompass all the elements of the microecosystem present in natural tumors, environments where for example immunological factors can influence the invasive behavior of the cancer cells. In at least one study, the absence of such factors in the assay has led to conflicting results between the outcomes of the chick heart assay29 and those of an animal model30.
A future application will be the study of cardiomyocyte progenitor cells in the assay. These cells can be injected therapeutically into infarction zones of cardiac patients, but they should be able to integrate into the myocardium. In the chick heart assay the progenitor cells will be confronted with chick heart fragments, and their migration and differentiation will be analysed.
The authors declare that they have no competing financial interests.
We thank Marleen De Meulemeester for demonstrating the assay technique in the video film. B. I. R. is a Postdoctoral Research Fellow of the Research Foundation – Flanders (FWO – Vlaanderen). L.M.M. is a recipient of an Emmanuel van der Schueren grant from the Flemish League against Cancer (Vlaamse Liga tegen Kanker).
Name | Company | Catalog Number | Comments |
Ringer's salt solution | Braun | CEO123 | |
Bacto-agar | Becton Dickinson | 214010 | |
Tris-(hydroxymethyl)-aminomethaan Analar | VWR | 103157P | |
BSA : albumin from bovine serum, cohn V fract. | Sigma | A4503-500G | |
MEM-Rega 3 | Life Technologies | 19993013 | |
Gyrotory shakers | New Brunswick Scientific | G10 and G33 | |
Erlenmeyer flasks 50 ml | Novolab | 92717 | |
Glass Petri dishes | Novolab | 68516 | |
Iridectomy scissors | Rumex | 11-0625 | |
Macroscope with calibrated ocular grid | Wild | 157702 | |
Paraffin wax | International Medical products | 8599956 | |
Eosin Y | Sigma | 230251-25g | |
Harris' hematoxylin | Sigma | HHS32-1L | |
Coverslipping resin (Tissue-Tek) | Sakura | 4494 | |
Paraffin melting apparatus | GFL | 1052 | |
Microtome for paraffin sectioning | Reichert | ||
Stppers for Erlemeyer flasks with gas in- and outlets | Novolab | 2602421 and 260243 | |
Diaminobenzidine | Sigma | D8001 | |
REAX rocking table | Heidolph | 54131 | |
24-well tissue dishes | VWR | NUNC142475 | |
Ophtalmological enucleation spoon | Rumex | 16-060 | |
Sharp forceps | Rumex | 4-111T | |
Blunt forceps | Nickel-Electro LTD | 7112 | |
Erlenmeyer flasks 5 ml | Novolab | 211901 | |
Microscope slides washed and degreased | International Medical products | 8613908 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone