JoVE Logo

로그인

4.1 : 리간드 결합 자리

Proteins are dynamic macromolecules that carry out a wide variety of essential processes; however, the activities of most proteins depend on their interactions with other molecules or ions, known as ligands.

Protein-ligand interactions are quite specific; even though numerous potential ligands surround a cellular protein at any given time, only a particular ligand can bind to that protein. Moreover, a ligand binds only to a dedicated area on the surface of the protein, known as the ligand-binding site. The specificity of a protein’s ligand-binding site is determined by the arrangement of its amino acid chain which gives the area its shape and chemical reactivity. Hence, a ligand-binding site provides a complementary shape to its ligand and keeps the ligand in place via chemical interactions. These chemical interactions are often noncovalent; however, since these interactions are reversible and weak, many of these interactions need to occur simultaneously to hold the protein and the ligand together.

Research that elucidates interaction mechanisms at ligand binding sites generally involves in silico modeling and in vitro approaches. In silico modeling uses computers to compare previously known protein structures and evolutionary data to make predictions to determine the optimal binding shape and energy state of the protein-ligand complex. In vitro approaches compliment in silico predictions by providing evidence for ligand binding through binding and kinetic assays in the laboratory. Ligand binding research is important for understanding the functions of proteins and how they perform specific cellular processes in both healthy, as well as in diseased conditions. For instance, certain genetic conditions and cancers can alter the sequence of a protein, ultimately affecting its ability to bind a ligand. In addition, this research also allows scientists to design drugs with specific interactions and minimal side effects by targeting the ligand-binding site of an implicated protein.

Tags

Ligand Binding SitesProtein InteractionsSpecific RegionComplementary Binding SiteLigand SelectivityAmino AcidsChemical InteractionsNon covalent InteractionsWeak InteractionsVan Der Waals InteractionsHydrogen BondingElectrostatic InteractionsLigand Binding Site ShapeWater Molecules Access

장에서 4:

article

Now Playing

4.1 : 리간드 결합 자리

Protein Function

12.6K Views

article

4.2 : 단백질-단백질 접점

Protein Function

12.4K Views

article

4.3 : 보존된 결합 자리

Protein Function

4.1K Views

article

4.4 : 평형 결합 상수와 평형 결합 강도

Protein Function

12.7K Views

article

4.5 : 보조인자와 보조효소

Protein Function

7.2K Views

article

4.6 : 다른자리입체성 조절

Protein Function

13.9K Views

article

4.7 : 리간드 결합

Protein Function

4.7K Views

article

4.8 : 협동적 다른자리입체성 전이

Protein Function

7.8K Views

article

4.9 : 인산화

Protein Function

5.9K Views

article

4.10 : 단백질 인산화효소와 인산가수분해효소

Protein Function

13.0K Views

article

4.11 : GTP가수분해효소와 효소의 조절

Protein Function

8.2K Views

article

4.12 : 공유결합 단백질 조절자

Protein Function

6.7K Views

article

4.13 : 단백질 복합체와 교체 가능한 부위

Protein Function

2.5K Views

article

4.14 : 기계 단백질 기능

Protein Function

4.9K Views

article

4.15 : 구조 단백질 기능

Protein Function

27.2K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유