JoVE Logo

登录

4.1 : Ligand Binding Sites

Proteins are dynamic macromolecules that carry out a wide variety of essential processes; however, the activities of most proteins depend on their interactions with other molecules or ions, known as ligands.

Protein-ligand interactions are quite specific; even though numerous potential ligands surround a cellular protein at any given time, only a particular ligand can bind to that protein. Moreover, a ligand binds only to a dedicated area on the surface of the protein, known as the ligand-binding site. The specificity of a protein’s ligand-binding site is determined by the arrangement of its amino acid chain which gives the area its shape and chemical reactivity. Hence, a ligand-binding site provides a complementary shape to its ligand and keeps the ligand in place via chemical interactions. These chemical interactions are often noncovalent; however, since these interactions are reversible and weak, many of these interactions need to occur simultaneously to hold the protein and the ligand together.

Research that elucidates interaction mechanisms at ligand binding sites generally involves in silico modeling and in vitro approaches. In silico modeling uses computers to compare previously known protein structures and evolutionary data to make predictions to determine the optimal binding shape and energy state of the protein-ligand complex. In vitro approaches compliment in silico predictions by providing evidence for ligand binding through binding and kinetic assays in the laboratory. Ligand binding research is important for understanding the functions of proteins and how they perform specific cellular processes in both healthy, as well as in diseased conditions. For instance, certain genetic conditions and cancers can alter the sequence of a protein, ultimately affecting its ability to bind a ligand. In addition, this research also allows scientists to design drugs with specific interactions and minimal side effects by targeting the ligand-binding site of an implicated protein.

Tags

Ligand Binding SitesProtein InteractionsSpecific RegionComplementary Binding SiteLigand SelectivityAmino AcidsChemical InteractionsNon covalent InteractionsWeak InteractionsVan Der Waals InteractionsHydrogen BondingElectrostatic InteractionsLigand Binding Site ShapeWater Molecules Access

来自章节 4:

article

Now Playing

4.1 : Ligand Binding Sites

Protein Function

12.6K Views

article

4.2 : 蛋白质-蛋白质接口

Protein Function

12.4K Views

article

4.3 : 保守的结合位点

Protein Function

4.1K Views

article

4.4 : 平衡结合常数和结合强度

Protein Function

12.7K Views

article

4.5 : 辅因子和辅酶

Protein Function

7.2K Views

article

4.6 : 变构调节

Protein Function

13.9K Views

article

4.7 : 配体结合和键合

Protein Function

4.7K Views

article

4.8 : 协作变构转换

Protein Function

7.8K Views

article

4.9 : 磷酸化

Protein Function

5.9K Views

article

4.10 : 蛋白激酶和磷酸酶

Protein Function

13.0K Views

article

4.11 : GTP 酶及其调节

Protein Function

8.2K Views

article

4.12 : 共价连接的蛋白质调节因子

Protein Function

6.7K Views

article

4.13 : 具有可互换部分的蛋白质复合物

Protein Function

2.5K Views

article

4.14 : 机械蛋白功能

Protein Function

4.9K Views

article

4.15 : 结构蛋白功能

Protein Function

27.2K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。