Method Article
* これらの著者は同等に貢献しました
椎骨の安定化は、変動性を最小化するための、一貫性の実験的脊髄損傷を生成するために必要である。 NYU / MASCISインパクター装置と組み合わせてカスタマイズされた安定化装置を使用して、我々はここに、成体ラットにおける再現性のヘミ挫傷子宮頸部(C5)脊髄損傷を生成するための適切な機器および手順を示した。
臨床的に関連する動物頸椎脊髄損傷(SCI)のモデルは、潜在的な治療法の開発およびテストのために不可欠である。しかしながら、信頼性のある子宮頸部SCIを製造することにより、椎骨の安定化の良好な方法がないために困難である。背骨を安定させるための従来の方法は、子宮頸部の棘突起に取り付けるクランプ経由吻側および尾側頸椎を中断することです。しかし、この安定化方法は、頚椎のプロセスが効果的に( 図1)クランプによって固定することには短すぎるよう挫傷中に生じる組織を防止することができない。ここでは、完全に衝突損傷の同じレベルで頚椎を安定化するための新しい方法を紹介します。この方法は、効果的に非常に一貫性のあるのSCIの生産性が向上インパクトの部位で脊柱の動きを最小限に抑えることができます。私たちは、機器( 図2-4)の視覚的な説明を提供、方法sであり、成体ラットの子宮頸部椎骨5(C5)の安定化のためのステップバイステップのプロトコル、椎弓切除( 図5)を実行した後、挫傷性SCIを生成する。我々は唯一のNYU / MASCISインパクター装置を用いて子宮頸部ヘミ挫傷を実証するが、この椎骨安定化技術は、脊髄の他の領域に適用することができ、または他のSCIデバイスに適合させる。脊椎の安定化を通じて脊髄露出と固定を改善することは、脊髄への一貫性と信頼性の傷害を製造するための価値がある。この椎骨の安定化方法はまた、細胞およびトレーサーの定位注射、および様々な神経生物学的研究において二光子顕微鏡を用いた撮像のために使用することができる。
ターゲット脊髄組織に一貫性のある複製可能な機械的な力は、機能的および組織学的変動性を最小にするための成功挫傷、脊髄損傷(SCI)モデル1-7を確立するために重要である。脊髄の標的領域に適用される力の量は、脊椎安定化のために利用される方法に依存する。インパクトプランジャと脊髄の間の接触時の目標背骨の位置ずれが生じた傷害力を変化させる。子宮頸部挫傷SCIモデルは、ヒトSCIの症例の約50%がこのレベル8で発生し、そしていくつかのSCI試験は、動物の子宮頸部損傷モデル9-14を使用して実施された、SCIの他の形態よりも多くの臨床的に関連するモデルである。挫傷性SCIモデルは、多くの場合、損傷部位に棘突起の前方および後方にクランプすることにより安定化のいくつかのフォームを利用しているが、この調製物は、子宮頸部SCIを製造することは困難である。  このデモに示すように、我々が開発した安定化方法は、挫傷の品質と再現性の両方を増加する能力において有利である。特に、脊椎の安定化のこの方法は、他のモデルの欠点や課題を改正しようとする試みに設立されました:1)衝撃力の下で得た椎の変動は、椎弓切除に吻側および尾側に隣接し、背棘突起をクランプすることによって発生する可能性があります。椎骨シフトの程度は影響した( 図1)安定化されている椎骨の間の椎骨の関節の数に依存する。そのため、複数の関節、脊椎になるあまり安定関与。 2)背側棘突起は壊れやすく、棘突起骨折またはプロセスの滑り落ちるクランプの結果、クランプ不良の原因。 3)これらの脊椎骨に棘突起は、胸部ヴェールのものと比較してT1椎骨C3との間で非常に短いです従来のクランプを使用してそれを困難にブレイは、頚椎を安定化するための棘突起を把握する。
ここでは、成体雌Sprague-DawleyラットにおけるC5挫傷性SCIを製造するための脊椎を安定化する新規な方法を記載する。この方法は、ニューヨーク大学/多施設動物脊髄損傷の研究(NYU / MASCIS)を含め、他の挫傷SCIデバイスと同様に他の脊柱と脊髄のレベル、および複合体の安定化のために使用することができインパクター15( 図2) SCIの研究で広く使用を可能にする、高精度、システムおよび計装、LLC無限ホライゾン(IH)デバイス16、オハイオ州立大学/電磁脊髄損傷デバイス1、及びルイビル傷害システム装置(LISA)17、。
頚椎ラミナの1.暴露
2.椎骨を安定化させ、インパクト傷害の実行
このプロトコルを、以下の時に、一貫して再現性の子宮頸部ヘミ挫傷性SCI( 図5および6)が生成される。 SCIのために意図されたレベルの同じ椎骨の横方向のプロセスを安定させる椎骨安定剤の使用は、満足な結果を可能にする。この方法を使用して、ターゲットC5椎骨が、隣接C4及びC6のみならず、堅く固定されている。
NYU / MASCISソフトウェアは、x及びy軸上に設定されたグラフで読み出しを提供し、我々の椎骨安定化方法の使用をサポートし、および装置( 図6)。安定化のこの方法は、標的組織及び脊柱( 図1)の下方へのシフトから生じる傷害の変動を減少させる。損傷後、C5とC6 DREZsの間の中心に明確な一方的な青みがかった血腫が見える( 図5E)です。これらの損傷パラメータは、動物から肛門に一致しているNYU / MASCISソフトウェアが提供する読み出しに従ってMAL( 図6)。
子宮頸ヘミ挫傷が明確前肢の赤字を作成するように、このモデルは、到達13グルーミング 、およびオブジェクトの操作18-19として前肢機能的能力を評価するのに理想的です。後肢運動障害はあまり顕著であるとして、バッソ、ビーティーとブレスナハン(BBB)運動スコアリングスケール4、このモデルでの使用には適していません。損傷後の機能転帰は、ラットは、すべての桁が18を屈曲して拳を「こん棒」発揮する同側の前肢の伸筋赤字、最も顕著です。同じ傷害の重症度および脊髄のレベルにさらされるすべての動物は正しい傷害の際に、このプロトコルに示した同側の前肢、同様の赤字を示すべきである。不適切に負傷した動物は、赤字13,18の非常に異なる症状と期間を呈することがある。
組織学的には、このモデルは、脊髄の傷害を受けた側の中、ほぼ独占的に含まれているかなりの病変と空洞形成につながる、損傷部位への傷害の震源地と吻側および尾側での大規模なグレーと白質の損傷を生成します。大規模な神経細胞死18病変の境界で大きな、主にアストロサイトベースのグリア性瘢痕が形成される。
図1:異なるクランプ方法挫傷SCI中の脊柱の柔軟性のイラスト。図AとBは、柔軟性や棘突起が不適切な影響と一貫性のないデータを考慮して、背側クランプされている背骨の「降伏」。 Aに示す図は、インパクト時より柔軟(赤い破線が表示されますそして大きい曲線の矢印に)B(小さ な曲線の矢印で示されたものと比較して)、クランプは、椎弓切除および損傷部位から離れているように、 図Cはしっかりの横断プロセスの下で締め付けの安定化アームを我々の記載された装置との横方向の安定性を示すインパクトのサイトが実行されます椎骨。興味の椎骨が完全に安定するように、この手順の間に背骨のない柔軟性が、ありません。
図2:NYU / MASCISインパクとカスタム安定化コンテナ。図Aは、損傷の重症度(挿入)するための複数の棒の高さの設定で、NYU / MASCIS脊髄損傷装置の部品と機能を表示する。 図B及びCが保持するU字型の容器を示しているラット、及び安全に手術やけがの際に脊柱を安定させる鋸歯状の安定化アーム(YP張によって設計され、生成される)。
図3:NYU / MASCISインパクター上のカスタムマウントシステムと横microadjuster図Aは、脊髄損傷のためのU字型ラットの安定剤用のカスタム実装システムのさまざまなコンポーネントについて詳しく説明します。傷害ラット脊髄の正確な位置合わせのために重要な、 図形Aの横microadjusterに注意してください。 図B及びCは、(B)を使用せずに、その他の重要なに対してU字型ラットコンテナ(C)と安定剤のさらなる描写を提供傷害装置の構成要素は、(実装システム設計、YP Zによって生成ハング)。
図4:外科安定化装置と添付ファイルの個々の成分の測定は、カスタム安定化システムの各構成要素は、寸法およびスケール(A、C、およびD)を示すために強調表示される。胸部安定化アーム(B)は 、異なる脊椎外科モデルにおける使用のためのこの装置の潜在的なアプリケーションを示すことが示されている。
図5:手術のランドマークと子宮頸ヘミ挫傷、脊髄損傷のための準備。図AとBは 、適切IMPAの正しいランドマークを描く暴露ラットの脊髄上のCTアラインメント。適切な衝撃点は、C5とC6背側神経根(吻側-尾側)と正中線と脊髄(B)の側縁部との間に直接的である。 図CEを示し、より高い倍率で、所望の半分を露出させる工程慎重な一方的椎弓切除を通して怪我のために頸髄、。また、D及びEは、直前および脊髄挫傷損傷後のコードを実証する数字 。インパクト(黒矢印)によって引き起こされる目に見える出血(E)に注意してください。
図6 :. NYU / MASCISインパクとの衝突以下の容認できないデータ読み出しに対する許容できるの例。上のグラフ(A)と、先頭のデータセット(C) 赤の矢印で示され、下線のように、衝撃棒速度、初期の高さ、及び時間を開始するための「%の誤差」のデータ測定値と、非常に良好な衝撃の読み出しを説明する。すべての値は許容誤差のウィンドウ内に十分に落ちる。逆に、下のパネルは、従来のインパクターロッドの高さを設定する脊髄表面にインパクターロッド先端の「ゼロ」の間に不適切な脊柱(B)の安定化誤差に起因する不適切な衝撃によって生成されたデータを示してい(C)。赤い矢印と下線で示したように、かなりの誤差は、初期の高さのために示され、インパク降下の開始時刻に注意してください。ソフトウェアは、エラーが、これらのパラメータ(パネルCの下部)が検出されたことを警告する。
ここでは、C5での一方的な挫傷性SCIを製造するための頸椎の安定化方法を示した。この安定化法は、解剖学的に外傷の精度が向上し、一貫性のある機能的な赤字の13,18を生成します。棘突起の背側のクランプに依存する他のモデルでは、椎骨からクランプの棘突起の損傷または剥離の危険性が非常に高い。これらのモデルには、かなりの背骨がシフトし挫傷力と背骨の柔軟な性質及びせき柱( 図1AおよびB)から得可能にすることができる。組織を変化させるプランジャ組織接触時間をもたらすと予測不可能な損傷力( 図1A-B&6B)をもたらす。私たちの記載された椎安定化はまた、外科準備に他の利点を提供します。1)このメソッドは完全に下にC5を中心とした脊椎骨を安定させる椎弓切除術( 図1C)の精度を向上させる外科用顕微鏡。 2)動物がU字型の安定剤内に取り付けSCIデバイス上で動物を再装着の手順を回避し、時間を節約し、カスタマイズされた取付金具に外科場所から直接取り出すことができる。別の尺度は、変動性を減少させ、3)傷害レベルで椎骨を安定化し、直接大きく呼吸に起因する身体の動きを減少させることができる損傷の意図された部位に背側及び尾。
この安定化方法を利用する主な利点は、降伏の減少量、または衝突時脊髄および列の腹側の移動である。挫傷の単純な物理学に基づいて、衝撃力とエネルギーは、理想的にインパクトのサイトでこのエネルギーを吸収するコードを使用して、脊髄へのロッドから転送されます。しかし、コードの下の背骨の利回り場合、可能であるなら背側棘クランプ方式( 図1A&B)において、コードに適用される実際の力は減少し、変数、歩留まりの程度に応じている。
このビデオは、子宮頸部挫傷SCIモデルの全体の手順を示しているが、この記事の本質は、特にSCI研究のために、私たちは私たちの研究室で様々な用途に使用する脊椎安定化方法の紹介です。この安定化装置及び方法の修正版は、マウスSCI 23で使用されてきた。脊椎安定化のこの簡単な方法は、SCIの研究のために非常に有用であり、我々は以前に胸部挫傷など裂傷SCIモデルを実行するには、この方法と装置を使用している。もう一つの研究室では最近、このジャーナル22で頸椎損傷のための安定化のこの形態の変化を説明した。要約すると、我々はいくつかのsurgicにこの新規椎体安定化方法をご紹介椎弓切除から傷害の生産に至るまで再現可能な実験的なSCIを生成するためのアル手続き。この安定化方法は、大槽、片側切断および離断損傷から内、脊髄内注射、細胞移植、CSFのコレクションとして実験の多種多様のために適合されているように、この安定化装置の利点は、子宮頸部脊髄挫傷に限定されないが、 in vivoイメージングの胸部挫傷は、二光子顕微鏡、および脊髄電気生理学的記録を使用する。脊椎外科と傷害手続きの質を高め、実験的なばらつきを低減することは傷害と回復の真のメカニズムへの洞察を提供するのに役立つ、とSCIの壊滅的な障害に対する異なる治療の効果を選別します。
私たちは、開示することは何もない。
この作業は、[X-MXにNS36350、NS52290、およびNS50243]国立衛生研究所によってサポートされていました。マリ·ハルマン·ジョージ基金基金。インディアナ州。とルースL.キルシュシュタイン国立研究サービス賞(NRSA)CLWに1F31NS071863
Name | Company | Catalog Number | Comments |
Purdue Products Betadine Surgical Scrub | Fisher Scientific | 19-027132 | |
Dukal Gauze Sponges | Fisher Scientific | 22-415-490 | |
Ketamine (87.7 mg/kg)/Xylazine (12.3 mg/kg) | Webster Veterinary | 07-881-9413, 07-890-5745 | |
Decon Ethanol 200 Proof | Fisher Scientific | 04-355-450 | |
Artificial Tears Eye Ointment | Webster Veterinary | 07-870-5261 | |
Antiobiotic Ointment | Webster Veterinary | 07-877-0876 | |
Cotton Tipped Applicators | Fisher Scientific | 1006015 | |
Rongeur | Fine Science Tools | 16000-14 | |
Surigical Scissors | Fine Science Tools | 15009-08 | |
Scissors (blunt dissection) | Fine Science Tools | 14040-10 | |
Surgical Retractor | Fine Science Tools | 17005-04 | |
Large Forceps | Fine Science Tools | 11024-18 | |
Fine Forceps | Fine Science Tools | 11223-20 | |
Hemostat | Fine Science Tools | 13004-14 | |
Scalpel | Fine Science Tools | 10003-12 | |
Scalpel Blade #15 | Fisher Scientific | 10015-00 | |
EZ Clips | Fisher Scientific | 59027 | |
Sterile sutures | Fine Science Tools | 12051-10 | |
Instrument Sterilizer | Fine Science Tools | 14040-10 | |
Surgical Stabilizer | Custom Manufactured | N/A | Contact Y. Ping Zhang for details. (yipingzhang50@gmail.com) |
Vertebral Stabilization Bars (clawed endfeet) | Custom Manufactured | N/A | Contact Y. Ping Zhang for details. (yipingzhang50@gmail.com) |
NYU/MASCIS Impactor Device | Custom Manufactured | W. M. Keck Center for Collaborative Neuroscience Rutgers, The State University of New Jersey e-mail: impactor@biology.rutgers.edu |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved