Method Article
Presentamos los procedimientos detallados para producir curvas experimentales de equilibrio de la composición de la fase en función de la concentración de solvente en un sistema de estado sólido bajo condiciones de fresado.
Los resultados del equilibrio de molienda de molino de bolas pueden cambiar dramáticamente en función de incluso pequeñas variaciones en las condiciones experimentales tales como la presencia de muy pequeñas cantidades de solvente agregado. Para capturar esta sensibilidad reproducible y precisa, el experimentador debe considerar cuidadosamente cada factor individual que puede afectar el molino de bola pulido reacción bajo investigación, desde asegurar que los frascos pulidos están limpios y secos antes de usar, Añadir exactamente la estequiometría de las materias primas, para validar que la entrega de volumen solvente es precisa, para asegurar que la interacción entre el disolvente y el polvo está bien entendían y, si es necesario, se añade un determinado tiempo de remojo para el procedimiento. Estudios cinéticos preliminares son esenciales para determinar el tiempo de molienda necesaria para alcanzar el equilibrio. Sólo entonces pueden obtenerse curvas de composición exquisita fase en función de la concentración del solvente bajo bola molino líquida asistida pulido (LAG). Utilizando estrictos y cuidadosos procedimientos análogos a los aquí presentados, pueden obtenerse tales curvas de equilibrio de fresado para prácticamente todos los sistemas de fresado. El sistema que usamos para demostrar estos procedimientos es una reacción de intercambio de disulfuro a partir de la mezcla equimolar de dos homodímeros para obtener en el heterodímero cuantitativo de equilibrio. Este último está formado por el molino de bola pulido como dos organismos polimorfos diferentes, forma A y Forma B. La relación R = [Formulario B] / ([formulario] + [Forma B]) en el fresado de equilibrio depende de la naturaleza y concentración del solvente en el recipiente de moler.
Mecanoquímica con molino manual o de bola equipo de pulido se ha convertido en cada vez más popular en los últimos años como una alternativa atractiva y sostenible a los métodos de solución tradicional para la síntesis de materiales. 1 es atractiva porque permite la reacción entre sólidos para alcanzar con eficacia y cuantitativamente. Es una técnica sostenible "verde", que requieren poco o ningún solvente. Molienda o molienda manual se puede realizar limpias, es decir, no agrega solvente o disolvente asistida: en el último, conocido como "líquido asistida pulido" (retraso),2,3,4 cantidades muy pequeñas de líquido adicional pueden acelerar o incluso activar otra manera inaccesibles mecanoquímica las reacciones entre sólidos. Mecanoquímica métodos se han utilizado para un número cada vez mayor de diferentes reacciones químicas y síntesis de compuestos orgánicos e inorgánicos,5,6,7,8,9 ,11 , así como para la formación de arquitecturas supramoleculares como moleculares Co-cristales,12,13,14 metalorganic Marcos,15, 16 , 17 e incluso jaulas18 y Rotaxanos19. Parece que muchos procesos pueden continuar en ausencia de disolvente o solvente presente en mínimas cantidades substoichiometric. 2 , 3 , 4 los mecanismos y las fuerzas implicadas en las síntesis químicas y supramoleculares reacciones inducidas por condiciones mecanoquímica son objeto de debate. 1 , 13 , 20 , 21 , 22 , 23 , 24
Nuestra investigación se centra en los resultados de equilibrio final de pulir el proceso y el papel del solvente en equilibrio bajo condiciones de retraso de molino de bola el molino de bola. De hecho, después de que el molino de bola pulido reacción alcanza realización, equilibrio termodinámico se logra en los dos sistemas que hemos investigado hasta ahora en nuestro sistema, con una composición de la fase estable. 25 los factores que pueden afectar el equilibrio final son numerosos y diversos: la bola de tamaño tarro de molino y forma y material, del tamaño del rodamiento de bola y peso y material, frecuencia de molienda, temperatura y naturaleza solvente y concentración. Evidentemente es el caso cuando el resultado termodinámico de los cambios de reacción pulido dramáticamente en respuesta a un cambio en el volumen de disolvente añadido, que puede ser en algún momento como 1μl por 200 mg de polvo total. 25 cuidado y estrictos procedimientos experimentales deben ser probado y seguido para lograr la precisión de los resultados experimentales, de almacenamiento de reactivos y productos, para pipetear y operaciones de fresado antes de la mezcla y reproducibles. Es difícil de controlar o incluso monitorizar parámetros en un tarro de fresado. Por lo tanto, el uso de un molino mezclador mecánico (también llamado Molino vibratorio), que permite tiempos y frecuencias de fresado controlado y reproducible y sellado de frascos de fresado son esenciales. Asegurar que toda la bola de pulido reacciones alcance equilibrio requiere algunos investigación cinética preliminar de las condiciones experimentales. El mezclador mecánico utilizado para las curvas que presentamos aquí fue modificado. Para evitar que los recipientes de calentamiento a través del flujo continuo de los escapes del motor en la cámara de sellado durante largos períodos de molienda, la cubierta de seguridad sellado de la parte delantera de la amoladora fue quitada, y una pantalla de seguridad externa se colocó en su pla CE.
El sistema que utilizamos como un primer ejemplo es la reacción de intercambio de disulfuro entre bis-2-nitrophenyldisulfide (nombrada de 1-1) y bis-4-chlorophenyldisulfide (nombrada de 2-2) en presencia de una pequeña cantidad de catalizador base 1, 8-Diazabiciclo [ 5.4.0]undec-7-ene (dbu) a producir sobre molino de bola aseado pulido (NG) y quedan lo compuesto 4-clorofenil-2-nitrofenil-disulfuro (llamado 1-2). 26 , 27 el último está formado por el molino de bola pulido como dos organismos polimorfos diferentes, forma A y Forma B. Para muchos diferentes solventes LAG, formulario A es el producto termodinámico bajo condiciones de NG de molino de bola o cuando no hay suficiente disolvente se utiliza en la reacción pulida llevada a equilibrio, mientras que la Forma B se obtiene como el producto termodinámico bajo bola condiciones de retraso de molino en el equilibrio cuando se agrega suficiente solvente para la molienda de la jarra. De hecho forma A puede obtenerse Forma B debajo del molino de bola NG, mientras que la Forma B puede obtenerse de forma A bajo el molino de bola LAG. Tal transformación directa en experimentos de fresado se ha divulgado antes en otros sistemas,28,29 y se ha reportado que la naturaleza y concentración del disolvente determinan los polimorfos obtenidos en condiciones de REZAGO. 30 nuestros resultados experimentales publicados incluyen la investigación de fresado de curvas de equilibrio para una gama de disolventes orgánicos. Aquí la relación de composición de fase de equilibrio R = [Formulario B] / ([formulario] + [Forma B]) es una gráfica contra el volumen de solvente LAG para cada experimento. El inicio de la curva de equilibrio y la agudeza de la curva fueron encontrados dependiendo de la naturaleza y la cantidad molar de disolvente añadido a la jarra de fresa.
Figura 1: Esquema de la reacción del molino de bola pulido experimentos y concepto de las curvas de equilibrio solvente utilizando el valor de R.
Estas curvas de equilibrio muestra gráficamente el efecto de la adición de unas gotas de solvente (eje x) sobre la composición de la fase del producto (eje y) cuando la bola de pulido durante el tiempo suficiente para lograr las condiciones de equilibrio. La parte inferior de las cuentas de gráfico de forma A ser formado cuantitativamente, la parte superior de la gráfica para la Forma B cuantitativamente a formarse mientras que una mezcla de la forma A y Forma B está formada por el rango de volumen de solvente contabilidad para la parte sigmoidea del gráfico. Esta figura ha sido reeditada con cambios de menor importancia de la información complementaria en Chem SCI., 2016, 7, 6617 (Ref. 25). Haga clic aquí para ver una versión más grande de esta figura.
Aspectos termodinámicos son generales y deben aplicarse a cualquier sistema dado de fresado. Como un ejemplo más para demostrar la generalidad de nuestras observaciones, una curva de equilibrio análoga también fue producida para un segundo sistema: los dos organismos polimorfos de cristal Co 1:1 de teofilina (tp) y benzamida (bzm), forma I forma II, donde el resultado depende del volumen de agua en la mezcla de pulido. 25 estas fase composición versus las curvas de equilibrio de concentración de solvente es esencial para investigar la interacción entre las superficies de nanocristales y las moléculas del solvente en equilibrio en el molino de bola pulido reacciones. Nuestros resultados demuestran que algunas curvas de equilibrio están muy afiladas, mostrando un comportamiento "todo o nada", que es característico de las partículas con un gran número de sitios de adsorción y cooperatividad positiva del proceso de encuadernación. 31 las curvas de equilibrio menos indican un menor nivel de cooperatividad y sugieren la presencia de una tercera fase en el equilibrio, posiblemente una fase amorfa con el solvente sí mismo. Se han producido tales curvas de equilibrio de fresado para ningún otro sistema a nuestro conocimiento. Creemos esto para ser en parte debido a la sensibilidad inherente del sistema de estado sólido incluso muy pequeños cambios ambientales bajo condiciones de retraso de molino de bola.
Preparación de curvas de concentración de solvente buen y fiable sólo puede lograrse si los investigadores validar cuidadosamente sus habilidades de pipetas con sistemas de entrenamiento entiende (i) Cómo funcionan los pipetas y jeringas y si (ii) si el equipo ha seleccionado para entregar un volumen preciso y exacto de un solvente es conveniente realizar el trabajo previsto. La entrega de un volumen exacto de disolvente se puede lograr con una variedad de equipos, siendo esta pipetas o jeringas y su elección puede depender de la disponibilidad, preferencias del usuario y las habilidades, presión de vapor del solvente utilizado y diseñado la aplicación para la molino de bolas molienda experimentos.
Pipetas están comercialmente disponibles como aire desplazamiento o de desplazamiento positivo que cubre muchas gamas de solvente. Ambos tipos de pipetas están comercialmente disponibles como manual o electrónicamente automatizado. Pipetas automáticas son preferidos generalmente como menos dependientes de las habilidades del experimentador para poder aspirar o dispensar un solvente uniformemente a una velocidad dada. El experimentador debe confiar en la capacidad de las pipetas para suministrar el volumen exacto del solvente. Esto sólo puede suceder si las pipetas son precisas, bien mantenido, revisado y calibrado periódicamente. Por lo general, servicios de calibración de pipeta externa calibran pipetas a la norma ISO 8655 utilizando agua como disolvente. Por lo tanto, para cada solvente orgánico el experimentador debe validar su exactitud y precisión del pipeteado mediante experimentos de pesaje exactos previsto rango a dispensar.
El equipo entrega solvente más comúnmente usado es las pipetas de desplazamiento de aire que necesita un Consejo a equipar el cuerpo de la jeringuilla. Funcionan sobre un principio de cojín de aire; movimiento ascendente del pistón produce un vacío parcial en la punta, haciendo que el líquido impregne la punta que se separa del extremo del pistón por el colchón de aire. Se iniciará la fase de vapor del disolvente pipeteado se equilibren en el colchón de aire, el grado de evaporación depende de su presión de vapor. Humedecimiento previo es crucial al utilizar pipetas de volumen variable, fijado en su rango más bajo de volumen, desde la relación del espacio aéreo al líquido y el potencial de evaporación aumenta considerablemente en comparación con cuando la pipeta está situada en la parte superior de su rango de volumen. El experimentador sabrá cuando este equilibrio se consigue, como el solvente alícuota será colgar pero separada del extremo del pistón a partir de un resorte, el solvente en el extremo de la punta de permanecer firme cuando la pipeta se sostiene en posición vertical durante unos segundos : el solvente dentro de la punta no debe combarse o goteo. Pipetas de desplazamiento de aire se pueden utilizar en dos modos; utiliza más generalmente es el modo de pipeteado hacia adelante donde todo el solvente aspirado se dispensa cuantitativamente por un movimiento completo del pistón. El otro modo es el modo de pipeteado inverso; en este modo un exceso calculado de solvente se aspira con la pipeta, y por lo tanto después de la dosificación cuantitativa, un volumen residual de solventes siguen en la punta que debe desecharse a la basura. Modo de pipeteado inverso puede ser más conveniente para el volumen muy pequeño viscoso y dispensación de disolventes. Sin embargo, para alta presión de vapor de disolventes como diclorometano (DCM) o éter dietílico, equilibrado en la pipeta de desplazamiento de aire no se puede lograr fácilmente. Pipetas de desplazamiento positivo o jeringas son más adecuadas en este caso.
Proponemos que la composición de fase de equilibrio versus las curvas de concentración de solvente podría obtenerse para cualquier sistema bajo condiciones de retraso de molino de bola lo suficientemente bien diseñados, realizados y controlados.
1. validación de la dispensación precisa de disolventes orgánicos
Figura 5: Validación de la exactitud y la precisión del volumen dispensado con pipeta de desplazamiento electrónico de aire situado a modo de pipeteado, calibrado pesando experimentos. (a, b)
a) gama 10-100μl MeCN; b) amplió el estrecho rango de 20-30 μL MeCN. Esta figura ha sido reeditada con cambios de menor importancia de la información complementaria en Chem SCI., 2016, 7, 6617 (Ref. 25). Haga clic aquí para ver una versión más grande de esta figura.
2. síntesis de la forma A y forma B por molienda de molino de bola
Figura 2: El ejemplo Rietveld de la parcela de refinamiento para la mezcla de equilibrio bajo condiciones de fresado cuando se utiliza metanol μl 67.
Patrón experimental (línea negra), patrón calculado para la forma A (azul), patrón calculado para la Forma B (rojo) y el patrón de diferencia (gris). El refinamiento convergente con Rwp=10.82% y χ2 = 2.65. Para este ejemplo concreto la R ratio fue del 41% y tamaño de los cristales era estimada para ser 71 y 86 nm de forma A y Forma B respectivamente. Haga clic aquí para ver una versión más grande de esta figura.
Figura 3: Curvas cinéticas obtienen para el molino de bola aseado pulido reacción de 1-1 + 2-+ 2 2 M % dbu (a, b).
No se realizó conexión - las líneas son sólo una guía para el ojo. El gráfico muestra la composición de reactivos (1-1 y 2-2) y el heterodímero formado (forma A y Forma B) como %M versus tiempo de pulir un) análisis HPLC que muestra la composición química del polvo en cada punto cinético; b) refinamiento de Rietveld de PXRD analiza composición de fase que muestra del polvo en cada punto cinético. Demuestra que forma A está formado, exclusivamente, mientras que la Forma B no se forma en cualquier momento cinético. Reimpreso con permiso de JACS, 2014, 136, 16156 (Ref. 27). Copyright 2014 American Chemical Society. Haga clic aquí para ver una versión más grande de esta figura.
Figura 4: Curvas cinéticas obtienen para el molino de bola reacción LAG de 1-1 + 2-+ 2 2 dbu %M + 50 μl MeCN. (a, b)
No se realizó conexión - las líneas son sólo una guía para el ojo. El gráfico muestra la composición de reactivos (1-1 y 2-2) y el heterodímero formado (forma A y Forma B) como %M versus tiempo de pulir un) análisis HPLC que muestra la composición química del polvo en cada punto cinético; b) refinamiento de Rietveld de PXRD analiza composición de fase que muestra del polvo en cada punto cinético. Demuestra que la Forma B está formado exclusivamente mientras que forma A no se forma en cualquier momento cinético. Reimpreso con permiso de JACS, 2014, 136, 16156 (Ref. 27). Copyright 2014 American Chemical Society. Haga clic aquí para ver una versión más grande de esta figura.
3. preparación de la forma A y forma B por molino de bolas están utilizando diferentes tipos y volúmenes de solventes orgánicos como disolventes LAG.
Figura 7: El molino de bola LAG de 1-1 + 2-2 + 2 dbu %M h 3 a 30 Hz con DMF como solvente LAG. (a-e)
Cromatogramas HPLC y PXRD busca 3 ejemplos: en equililbrium, la adición de b) 13µL DMF resultados cuantitativos forma A, c) 30 μL DMF resultados cuantitativos Forma B y d) resultados DMF de 19 μl de una mezcla de la forma A y Forma B. e) curva de equilibrio THF se muestra los 17 experimentos realizados con DMF, trazar el %R determinado versus los μl de DMF agregado al polvo 200 mg. Esta figura ha sido reimpreso de la información complementaria en Chem SCI., 2016, 7, 6617 (Ref. 25). Haga clic aquí para ver una versión más grande de esta figura.
Figura 6: Curvas de equilibrio solvente para molino de bolas molienda reacción de 1-1 + 2 2 + 2 dbu %M cuando se utiliza metanol como solvente LAG. (a, b)
No se realizó conexión - la línea es sólo una guía para el ojo. La curva de equilibrio (%R versus μl metanol añadido a 200 mg de polvo) en una) da muy pobre correlación utilizando procedimiento experimental 1 en b) allí es una buena correlación cuando se utiliza el procedimiento experimental 2. Esta figura ha sido reimpreso de la información complementaria en Chem SCI., 2016, 7, 6617 (Ref. 25). Haga clic aquí para ver una versión más grande de esta figura.
4. determinación de la composición de la fase por PXRD
Nota: La fase de estado sólido se estudia composición de las mezclas del polvo obtenido al final del experimento de fresado por refinamiento de Rietveld de los datos de difracción de polvo ex-situ. 32 aquí se dan algunas pautas.
Este protocolo es siempre Iniciado por el experimentador validar sus habilidades pipeteo e inspección de la calidad y rendimiento de las pipetas o jeringas utilizadas. Esto se hace mejor al realizar formación conjuntos de volúmenes precisos de solvente específico destinado a ser utilizado para el molino de bola pulido experimentos. La exactitud de los volúmenes dispensadas es validada por control de peso y esta validación se repite hasta la deseada exactitud y precisión se logra. Esta validación debe hacerse para cada solvente usado para el molino de bola pulido experimentos. La figura 5 muestra un ejemplo de tal una validación precisa pipetear con acetonitrilo.
HPLC los datos fueron recogidos para obtener la composición química y análisis PXRD se colectaron para obtener la composición de la fase del polvo del molino de bola pulido reacciones (ver figura 1 para el esquema de la reacción y el concepto clave de las curvas de equilibrio solvente) . Datos HPLC cuantifica la composición química que %M de los 2 homodímeros (1-1 y 2-2) y el heterodímero (1-2) en el polvo. Refinamiento de Rietveld, preparado a partir de las exploraciones PXRD se utiliza para cuantificar la composición de la fase como %M de los materiales partida de homodímeros (1-1 y 2-2) y los dos organismos polimorfos (forma A y Forma B) del producto heterodímero 1-2 . HPLC se puede utilizar por lo tanto, para validar la exactitud de la composición de la fase resultados obtenidos por el refinamiento de Rietveld en las muestras de la misma; la concentración combinada de forma A y Forma B %M determinada por PXRD debe compararse con la concentración de 1-2 %M determinada por HPLC, mientras que 1-1 y 2-2 deben tener la misma concentración en %M determinado por HPLC y PXRD. Esto se muestra claramente en la figura 3 y figura 4 donde hay una buena correlación entre las curvas cinéticas de trazar la composición química obtenida por análisis de HPLC y las curvas cinéticas de trazar la composición de la fase obtenidas por PXRD Análisis.
El éxito de la preparación de curvas de equilibrio solvente exacto y preciso para el molino de bola pulido reacción depende de 3 factores: a) exacto y preciso de pipeteo por el experimentador; b) saber cuando el molino de bola pulido reacción ha alcanzado el equilibrio, que puede ser aprendido mediante la realización de los estudios cinéticos relevantes como se muestra en la figura 3 y figura 4; y c) usando el procedimiento correcto experimental para cada solvente. La curva de equilibrio en la figura 7 muestra la buena correlación entre %R y μl de DMF añadido a la reacción pulida cuando se utiliza el procedimiento experimental 1. Sin embargo, el procedimiento experimental 1 da muy pobre correlación entre %R y μl de metanol añadido a la reacción pulida como se muestra en la Figura 6a, mientras que el uso del procedimiento experimental 2 para metanol da buena correlación como se muestra en la figura 6b . Figura 8 muestra individual y combinado de diferentes solventes (MeCN, acetona, THF, EtOAc, DMF, CHCl3, DCM y MeOH, EtOH, IPA, DMSO) resulta en curvas diferentes equilibrio solvente para las reacciones de LAG de molino de bola. Figura 8 demuestran que se puede conseguir buena correlación entre %R y la cantidad de solvente añadido al molino de bola pulido reacción si cuidado y el buen diseño experimental se aplica cuando se realizan estos experimentos.
Si bien la mayoría de la literatura sobre mecanoquímica se centra en los resultados pragmáticos o en mecanismos de reacción, este documento aborda el punto final termodinámico de molienda de molino de bola. Desde esta perspectiva, los estudios cinéticos son un paso necesario para la definición de las mesetas de equilibrio final. A través de nuestros estudios de equilibrio cinético y final, sabemos que las reacciones molienda de molino de bola discutidas aquí son conducidas por la termodinámica, dando por resultado la composición polimorfo más estable bajo las condiciones de molienda dada. También es la primera vez a nuestro conocimiento que métodos de preparación experimental - como métodos de pipeteo y fresado jar configuración - para mecanoquímica experimentos se presentan y discuten en detalle.
Es fundamental para el éxito del molino de bola que lag los experimentos que se lleva a cabo un estudio cinético para establecer por cuánto tiempo el molino de bola pulido experimento necesita correr para alcanzar el equilibrio. Bajo condiciones termodinámicas molino de bola pulido reacciones puede presentar tres escenarios discutidos en este manuscrito; a) agregar no hay suficiente volumen de disolvente dado para el molino de bola pulido reacción, en cuyo caso el resultado es la formación cuantitativa de la forma A; b) utilizando por lo menos suficiente volumen de disolvente dado, que resulta en la formación cuantitativa de la Forma B; c) la tercera caja es la brecha entre ambos extremos, donde las habilidades, atención y diseño experimental del experimentador se convierten en más importantes. El experimentador exitoso será capaz de demostrar que la concentración de la Forma B aumenta con mayor volumen de solvente agregado de solvente dado de forma sigmoidal, hasta que suficiente solvente es añadido para dar lugar a la formación cuantitativa de forma B en un molino de bolas reacción de LAG. Para algunos solventes este cambio es tan agudo que una diferencia de sólo 1 μl es suficiente para obtener cuantitativamente forma A o forma B, como en el caso de acetonitrilo y acetona. Figura 8 resume esta discusión.
Figura 8: Individual y combinado solvente fresado de curvas de equilibrio trazan como disolvente concentración versus índice %R.
No se realizó conexión - las líneas son sólo una guía para el ojo. Disolventes investigados son: MeCN, acetona, THF, DMF, EtOAc, CHCl3, DCM, DMSO, MeOH, EtOH, IPA y agua. Agua no conduce a la formación de la forma B. La dosificación de DCM como solvente LAG se realizó con una jeringa de vidrio apretado de gas. Esta figura ha sido reimpreso de la información complementaria en Chem SCI., 2016, 7, 6617 (Ref. 25). Haga clic aquí para ver una versión más grande de esta figura.
Puesto que son conceptos termodinámicos, equilibrios de fresado en función de la concentración de solvente bajo condiciones de retraso de molino de bola debe ser susceptible de estudio para prácticamente para cualquier sistema dado establecer procedimientos análogos. Por lo tanto existe la posibilidad de explorar y descubrir nuevos polimorfos por variación de disolvente añadido, que puede tener implicaciones prácticas en diversos ámbitos industriales, y esto incluye más orgánicas e inorgánicas reacciones, así como supramoleculares compuestos.
Ambiente de laboratorio (temperatura, presión atmosférica, humedad) durante la preparación de muestras y experimentos puede afectar el equilibrio y cinética de la punto final del proceso de fresado - ver Tumanov et al. (2017) 37 como ejemplo. En nuestra experiencia, incluso las pequeñas variaciones en el tamaño y la forma de la jarra de fresa y los rodamientos de bolas - así como el material componen - y cantidad total de polvo puede afectar significativamente la velocidad de reacción y el equilibrio final de los experimentos de fresado. El experimentador debe tener mucho cuidado en el diseño y funcionamiento de estos experimentos, contemplando: (i) qué técnica de pipeteo debe ser adoptado para un solvente específico; (ii) Cómo compuestos deben ser añadido a la jarra de fresado y mezclado; (iii) el tamaño y la forma de la jarra de fresa y rodamientos de bolas; (iv) si un acero inoxidable o un material transparente - que es necesario para las técnicas in situ como Raman21,38 - deben adoptarse para la jarra de fresa y rodamientos de bolas. Tarros de plexiglás se dañan fácilmente por muchos solvente usado con LAG y solventes usados para limpiar los frascos. Impresión 3D de tarros transparentes de ácido poliláctico (PLA) permite más complicado diseño de la geometría externa de tarros, que muestran buena resistencia mecánica y química en comparación con metacrilato y son por lo tanto más conveniente para los experimentos de bolas de molienda. 39 experimentos de equilibrio deben ser realizados tan consistentemente como sea posible, tanto en el procedimiento experimental y el hardware, es decir, utilizando métodos de preparación idéntica, tarros, rodamientos de bolas y cantidad total de polvo.
Debe tener cuidado de no overgrind innecesariamente, puede ocurrir la descomposición. Para nuestro sistema de disulfuro, productos de descomposición pueden ser observados por ejemplo por análisis de HPLC o NMR. Si esto sucede, es necesario un estudio cinético de descomposición. Molino de bola pulido debe realizarse por el tiempo más corto que conduce al equilibrio.
El actual enfoque experimental tiene limitaciones no son control de temperatura macroscópica eficientemente y no sé las temperaturas locales en el recipiente de reacción de acero. También somos actualmente capaces de monitorear la evolución de la cristalinidad, lo que se refiere al grado de orden estructural en un sólido cristalino y morfología cristalina durante la molienda. En un polvo Nanocristalino, cristalinidad está sobre todo relacionada con el tamaño de cristal promedio, que puede afectar crucialmente las estabilidades de Polimorfia. 25 mejoras en estas áreas mejoraría enormemente nuestra capacidad para explorar y comprender los procesos subyacentes.
Los autores no tienen nada que revelar
AMB y JKMS agradecemos al EPSRC para apoyo financiero. Agradecemos a C. A. Bland para el diseño y la configuración mecánica y Donnelly P. para el diseño de software de la automatización de las muelas para repetición pulido. Agradecemos a Richard Nightingale, Ollie Norris y Simon Dowe por el taller mecánico para la fabricación de los recipientes de molienda y el solenoide para la instalación de "Un pulsador" y Keith Parmenter del taller de vidrio en el Departamento de química de la fabricación de las diapositivas PXRD de muestra de vidrio. Agradecemos a C. A. Bland para el mantenimiento y la reparación del cierre tornillo pulido tarros. Agradecemos profesor Bill Jones para el uso de los equipos de PXRD en el Departamento de química y profesor Chris Hunter para el uso de sus instalaciones de laboratorio. Agradecemos al Departamento de Ciencias de la tierra (GIL) para apoyo general.
Name | Company | Catalog Number | Comments |
Bis(2-nitrophenyl) disulfide named 1-1 | Aldrich | 215228-25G | [1155-00-6] (98%) |
Bis(4-chlorophenyl) disulfide named 2-2 | TCI | D0360 | [1142-19-4] (98+%) |
1,8-Diazabicyclo [5.4.0]undec-7-ene (dbu) | Acros Organics | 160610250 | [6674-22-2] (>97.5 % by GC) |
2-nitrophenyl-4-chlorophenyl-disulfide named 1-2 | in house synthesis | Synthesised by ball mill grinding: 1:1 of 1-1 + 2-2 + 2%M dbu | |
Form A | in house synthesis | Polymorph of 1-2 prepared by ball mill neat grinding | |
Form B | in house synthesis | Polymorph of 1-2 prepared by ball mill liquid assisted grinding | |
Formic Acid | Scientific Laboratory Supplies | 56302-50ML | [64-18-6] Mass spectrometry grade |
Trifluoroacetic acid (TFA) | ThermoFisher | 85183 | [76-05-1] Reagent-Plus 99% |
Water (H2O) | Rathburn | W/0106/PB17 | [7732-18-5] HPLC gradient analysis grade used also for HPLC analysis |
Acetonitrile (MeCN), | Merck | 160610250 | [75-05-8] Hypergrade for LCMS grade LiChrosolv used also for HPLC analysis |
Acetone | Fisher Scientific | A/0606/17 | [67-64-1] HPLC grade |
Methanol (MeOH) | Fisher Scientific | M/4062/17 | [67-56-1] LCMS grade |
Ethanol (EtOH) | Sigma Aldrich | 15727-5L | [64-17-5] laboratory reagent, absolute, |
isopropanol (IPA) | Fisher Scientific | P/7508/17 | [67-63-0] HPLC grade |
Tetrahydrofurane (THF) | Acros Organics | 268290010 | [109-99-9] For HPLC; 99%8, unstabilised |
Ethyl acetate (EtOAc) | Fisher Scientific | E/0906/15 | [141-78-6] |
Chloroform (CHCl3,) | Fisher Scientific | C/4966/17 | [67-66-3] HPLC grade, stabilised with amylene |
Dichloromethane (DCM) | Fisher Scientific | D/1857/17 | [75-09-2] HPLC grade, unstabilised |
Dimethylformamide (DMF) | Alfa Aesar | 22915 | [68-12-2] very toxic HPLC grade 99+% pure |
Dimethylsulfoxide (DMSO) | Alfa Aesar | 36480 | [67-68-5] very toxic ACS, 99.9% min |
Cyclohexane | Fisher Scientific | C/8936/15 | [110-82-7] HPLC grade, 99.8+% |
Toluene | Fisher Scientific Ltd | T/2306/15 | [108-88-3] HPLC grade |
Benzene | Sigma Aldrich | 401765 | [71-43-2] puriss pa reagent |
5 -120 mL automatic pipette | Sartorius | Picus eLine | systematic error in specification: for 120mL is ±0.48 mL, for 60 mL is ±0.36 mL, for 12 mL is ±0.24 mL |
VIAL screw clear 1.5ml + CAP bakelite solid screw PTFE lined for 10mm vial | Jaytee Biosciences | JW41110 + JW43927 | Capped vial used for validating accuracy and precision of dispensed solvent |
Crystal Structural Database | The Cambridge Crystallogra-phic Data Centre (CCDC) | Cambridge Structural Database (CSD) | Containing over 900,000 entries from x-ray and neutron diffraction analyses |
powder X-ray diffractometer | Panalytical | X-Pert PRO MPD | Equipped with an X’Celerator detector with Cu Kα radiation |
powder X-ray diffractometer data Collector software | Panalytical | X’Pert HighScore Plus v3.0 | solftware package used to adquire the PXRD data |
Rietveld refinement software including Scherrer equation | BRUKER | Version 6 of TOPAS-Academic | To prepare phase composition and crystal size from PXRD scans |
HPLC equipment | Agilent | HP1200 Series modular HPLC system | HPLC high pressure binary pump, autosampler, Peltier type column oven with 6 µL heat exchanger and Diode Array Detector with a semi-micro flow cell (1.6uL, 6mm pathlength). |
HPLC column | Agilent | 1.8mm Zorbax XDB C18, | (4.6mm ID × 50 mm length) |
Ball mill grinder | Retsch | MM400 | modified: replaced safety cover for external safety screen |
14 mL snap closure stainless steel jars | In house | manuctured from 316 stainless steel | |
14 mL screw closure stainless steel jars | In house | manuctured from 316 stainless steel - contains a PTFE washer | |
Stainless steel ball bearings: | Dejay Distribution Ltd | 7.0 mm (1.37g) | Stainless Steel Balls A.I.S.I. 420 Carbon (0.25/0.35%) & Chromium (12/14%) |
"Push a Button" software | Developed at Department of Chemistry | Written in Visual Basic. It activates an electronically controlled switch (relay). | |
"Push a Button" Solenoid | Magnet Schultz | Type 609RP 12 Volt DC | 609RP (RP stands for) R - for spring-return P - for push-rod |
"Push a Button" Solenoid holder | Department of Chemistry | To hold solenoid over START button on the MM400 | |
"Push a Button" Relay | KM Tronic | USB one relay | USB Relay Controller - One Channel - HyperTerminal ASCII commands. Connection to a PC's USB port using VCP (Virtual COM port). |
re-usable adhesive putty | Bostik | Blu-Tack | Used to hold the jar fixed on the bench. |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados