Anmelden

Infrared spectroscopy, also known as vibrational spectroscopy, is mainly used to determine the types of bonds and functional groups in molecules. In aldehydes and ketones, the carbonyl (C=O)bond shows an absorption around 1710 cm-1. The C=O bond vibration of an aldehyde occurs at lower frequencies than that of a ketone. In addition to the C=O absorption in an aldehyde, the aldehydic C–H bond also gives two peaks in the 2700–2800 cm-1 range. This absorption, coupled with the C=O stretching, is characteristic of an aldehydic group.

Conjugation reduces the electron density in the C=O bond, thereby reducing its stretching frequency. The stretching frequencies of cyclic ketones vary depending on their ring sizes. The strain in larger rings is lower than in smaller cyclic ketones. Stretching frequency increases with increasing ring strain. Therefore, the smallest and highly strained cyclopropanone ring has the highest stretching frequency.

UV-Visible spectroscopy employs UV and visible light to transition between different electronic energy levels. Two major transitions in organic compounds are n to π* and π to π* transitions. The π–π* is a stronger transition but occurs below 200 nm, which is not detectable in UV-Vis spectrometers. Conjugation of these molecules with a double bond or an aromatic ring shifts the absorption wavelength to above 200 nm. Each double bond that is conjugated adds a value of 30 nm to the absorption wavelength of the molecule.

n–π* transition is weaker than π–π* transition. Since the non-bonding orbital on oxygen and the anti-bonding π* orbital on the C–O bond is perpendicular, no overlap occurs between these two orbitals. Hence the n–π* is a forbidden transition and occurs much less frequently.

Tags

IR SpectroscopyUV Vis SpectroscopyAldehydesKetonesCarbonyl BondC O BondConjugationRing StrainElectronic TransitionsN TransitionTransition

Aus Kapitel 12:

article

Now Playing

12.5 : IR und UV-Vis-Spektroskopie von Aldehyden und Ketonen

Aldehyde und Ketone

5.0K Ansichten

article

12.1 : Strukturen von Aldehyden und Ketonen

Aldehyde und Ketone

7.5K Ansichten

article

12.2 : IUPAC Nomenklatur der Aldehyde

Aldehyde und Ketone

5.1K Ansichten

article

12.3 : IUPAC Nomenklatur der Ketone

Aldehyde und Ketone

5.2K Ansichten

article

12.4 : Gebräuchliche Bezeichnungen für Aldehyde und Ketone

Aldehyde und Ketone

3.3K Ansichten

article

12.6 : NMR-Spektroskopie und Massenspektrometrie von Aldehyden und Ketonen

Aldehyde und Ketone

3.5K Ansichten

article

12.7 : Herstellung von Aldehyden und Ketonen aus Alkoholen, Alkenen und Alkinen

Aldehyde und Ketone

3.3K Ansichten

article

12.8 : Herstellung von Aldehyden und Ketonen aus Nitrilen und Carbonsäuren

Aldehyde und Ketone

3.2K Ansichten

article

12.9 : Herstellung von Aldehyden und Ketonen aus Carbonsäurederivaten

Aldehyde und Ketone

2.4K Ansichten

article

12.10 : Nukleophile Addition an die Carbonylgruppe: Genereller Mechanismus

Aldehyde und Ketone

4.5K Ansichten

article

12.11 : Aldehyde und Ketone in Gegenwart von Wasser: Bildung von Hydraten

Aldehyde und Ketone

2.9K Ansichten

article

12.12 : Aldehyde und Ketone in Gegenwart von Alkoholen: Hemiacetal-Bildung

Aldehyde und Ketone

5.1K Ansichten

article

12.13 : Schutzgruppen für Aldehyde und Ketone: Einführung

Aldehyde und Ketone

6.0K Ansichten

article

12.14 : Acetale und Thioacetale als Schutzgruppen für Aldehyde und Ketone

Aldehyde und Ketone

3.8K Ansichten

article

12.15 : Aldehyde und Ketone in Gegenwart von HCN: Überblick über die Bildung von Cyanohydrin

Aldehyde und Ketone

2.5K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten