Method Article
我们描述了细胞外通量分析仪在小鼠精子增生期间实时监测糖解和氧化磷酸化变化的应用。
哺乳动物精子在女性生殖道中获得受精能力,这个过程称为卵子。与电容相关的过程需要能量。关于产生ATP的来源,促进精子渐进性、充能性、超活化和杂技反应的来源,仍有持续的争论。在这里,我们描述了细胞外通量分析仪的应用,作为分析小鼠精子细胞内能量代谢变化的工具。使用H+- 和O2-敏感荧光草,该方法允许在非电容和电容精子中实时监测糖解和氧化磷酸化。在存在不同能量基质和/或药理活化剂和/或抑制剂的情况下使用此测定,可以深入了解不同代谢途径的贡献以及精子加速期间信号级联和代谢之间的交集。
质谱学的应用彻底改变了代谢学的研究。靶向代谢特征分析和代谢追踪可以精确监测能量代谢的变化。然而,成功实施代谢组学需要大量的培训、经验丰富的工作人员和昂贵、高度敏感的质谱仪,而每个实验室都不容易获得。近年来,使用细胞外通量分析仪,如海马XFe96,作为测量各种细胞类型1、2、3、4、5能量代谢变化的替代方法,已经越来越流行。
精子是高度专业化的活细胞;其任务是把父系基因组传送给卵母细胞。射精后离开男性生殖道的精子在功能上仍然不成熟,不能受精卵母细胞,因为它们不能穿透卵母细胞的背心。精子在成熟过程中通过女性生殖道,称为"生育能力6,7",获得受精能力。从 cauda 表皮解剖的新鲜射精精子或精子可在体外孵育,在定义的电容培养基中孵育,其中含有 Ca2+、碳酸氢盐 (HCO3-) 或细胞渗透 cAMP 模拟(例如,二丁基林-cAMP)、胆固醇接受器(例如,牛血清白蛋白、BSA)和能量源(如葡萄糖)。在细胞发育过程中,精子将运动模式改变为不对称的鞭状节拍,代表一种称为超活化8、9的游泳模式,它们能够进行acrosome反应7,其中蛋白水解酶被释放,消化卵母细胞的背心。这些过程需要能量,并且类似于体细胞,精子通过糖解以及线粒体TCA周期和氧化磷酸化(牛磷酸化)10生成ATP和其他高能化合物。虽然多项研究表明糖解是必要的,足以支持精子的上限11,12,13,14,但牛磷的贡献则不那么明显。与其他细胞类型不同,糖解在物理上与TCA周期结合,精子高度分裂,被认为能将这些过程保持在单独的鞭节内:中间部分浓缩线粒体机械,而糖解的关键酶似乎仅限于主要部分15,16。这种分割导致一场持续的争论,关于糖解在主要部分产生的丙酮酸盐是否可以支持线粒体牛磷在中间部分,以及ATP产生的牛磷在中间是否能够足够迅速地扩散沿旗杆的长度,以支持能量需求在主要部分17,18,19。也有支持牛磷在精子能力中的作用。牛磷不仅比糖解更有利,产生的ATP比糖解多16倍,而且中片体积和线粒体含量与哺乳动物物种的生殖适应性直接相关,而哺乳动物之间对配偶20的竞争程度更大。解决这些问题需要检查糖解和牛磷在精子发作期间的相对贡献的方法。
Tourmente等人应用了24井细胞外通量分析仪,比较了与精子性能参数明显不同的小鼠物种的能量代谢21。在这里,我们使用96井细胞外通量分析仪来实时监测小鼠精子吸收过程中能量代谢的变化,而不是报告非电容精子的基础ECAR和OCR值。我们开发了一种方法,通过测量氧的通量(O2)和质子(H+)(图1A),在多达12个不同的实验条件下,通过实时监测精子中的糖解和牛磷,在多达12个不同的实验条件下击败鞭状藻。由于在糖解过程中乳酸分解为乳酸,并通过TCA循环生产CO2,非电容和容积的精子挤出H-进入检测介质,由细胞外通量分析仪通过H+敏感荧光管固定到传感器盒的探针尖端检测到。同时,通过氧化磷酸化检测O2消耗,通过O2-敏感荧光道固定到同一探针尖端(图1B)。有效检测释放的H+和消耗的O2需要经过修饰的精子缓冲液,缓冲能力低,不含碳酸氢盐或苯酚红。因此,为了在没有碳酸氢盐的情况下诱导电容,我们采用了一种可渗透的cAMP模拟注射与广泛PDE抑制剂IBMX22一起。三个额外的独立注射端口允许注射药理活化剂和/或抑制剂,这有助于实时检测细胞呼吸和糖解率因实验操作而发生的变化。
精子是从8-16周大的CD-1雄性小鼠身上采集的。动物实验得到了威尔康奈尔医学机构动物护理和使用委员会(IACUC)的批准。
1. 测定前一天
2. 测定日
该方法使用细胞外通量分析仪监测小鼠精子增生期间糖解和牛磷速率的实时变化。图4显示了一个示范性实验,其中精子在葡萄糖作为唯一能量基质的情况下被电位,而抗霉素和罗酮作为药理调节剂。细胞外通量分析仪TYH缓冲液和药理调制器的能量基板可根据实验目标自由选择。BSA/TYH中的未电容小鼠精子通过其头部附着在康A涂层瞬态室的底部。在此示例中,所有检测到的井之间的基底 ECAR 和 OCR 值分别为 12.76 ± 2.75 mpH/min 和 23.64 = 2.78 pmol/min。
使用TYH缓冲液模拟注射后,分别注射2-DG和蚂蚁/rot以抑制糖解和氧化磷酸化,通过注射db-cAMP/IBMX诱导精子容量。
具有代表性的结果表明,在葡萄糖存在的情况下,细胞外酸化率(ECAR)增加7倍,通过用2-DG阻断糖解(图4A)来抑制。与非电容精子相比,电容精子的耗氧率(OCR)增加了20倍(图4B),表明小鼠精子能增强糖解和氧化磷酸化,以支持电容期间不断增长的能源需求。精子加速期间ECAR的上升受到糖解抑制剂2-DG的抑制,但不受氧化磷酸化抑制剂抗霉素A和rotenone(图4C)的影响,表明ECAR的变化主要是由糖解的H+释放引起的。OCR的增加,如预期的那样,被抗霉素A和罗酮(图4D)阻止,但它也被2-DG(图4B)抑制,表明精子加速期间牛磷的增加取决于糖解活性。
图1:细胞外通量分析仪的原理。(A)由于糖解过程中葡萄糖对乳酸盐的分解以及通过TCA周期产生CO2,糖解和牛磷的变化伴随着H+排泄到细胞外介质中。XFe96 分析仪检测细胞外 H+浓度的这些变化,称为 ECAR。同时,通过氧化磷酸化消耗O2,细胞外O2浓度的变化被测量为OCR。用2-脱氧葡萄糖(2-DG)阻断糖解,或使用复体I和复体III抑制剂罗酮和抗霉素A呼吸,揭示了哪些代谢途径支持精子加速过程中不断增长的能源需求。(B)小鼠精子通过头部附着在涂上ConA涂层的微室底部;他们的旗帜是自由移动。虽然细胞外H+和O2浓度的变化被H+和O2-敏感荧光量固定到传感器探头中检测,但最多四种不同的化合物可以按顺序注入。请点击此处查看此图的较大版本。
图2:示范性实验的原理表。使用细胞外通量分析仪在非电容和电容精子中检测到ECAR(mpH/min)和OCR(pmol O2/min)的变化。周期 1:基础 ECAR 和 OCR 值。周期 2-5:TYH 模拟喷射后系统稳定。周期6-8:药物孵化。周期9-27:精子能力。箭头表示注射。2-DG:最终浓度50 mM,安踏/罗特:最终浓度0.5 μM,db-cAMP:最终浓度1 mM,IBMX:最终浓度500μM。请点击此处查看此图的较大版本。
图 3:数据分析。(A)小鼠精子封顶期间ECAR变化的原始数据。(B)删除前 7 个数据点后的数据。(C)在 cAMP/IBMX 注入之前将数据归化为数据点。数据显示为 7-8 井的平均值 = S.E.M. 注射用箭头表示。请点击此处查看此图的较大版本。
图4:小鼠精子开体期间糖解和氧化磷酸化的变化。(A)在存在和不存在 50 mM 2-DG 的情况下,在非电容和电容小鼠精子中标准化 ECAR。(B)在存在和不存在50 mM 2-DG的情况下,在未电容和电容小鼠精子中标准化OCR。(C)在存在和不存在0.5 μM抗霉素A和罗酮的情况下,在非电容和电容小鼠精子中标准化ECAR。(D)在存在和不存在0.5 μM抗霉素A和罗酮的情况下,在非电容和电容小鼠精子中标准化OCR。数据显示为平均值 = S.E.M 在 db-cAMP/IBMX 注入前归一化为数据点;n = 6。注射用箭头指示。请点击此处查看此图的较大版本。
港口 | 循环数 | 混合(分钟) | 等待(分钟) | 测量(分钟) | |
A: 基础 ECAR/OCR | 无端口 | 1 | 2:00 | 0:00 | 3:00 |
B: 模拟注射 | 1 | 4 | 2:00 | 0:00 | 3:00 |
C:药物注射 | 2 | 3 | 2:00 | 0:00 | 3:00 |
D: 卡盘 | 3 | 18 | 2:00 | 0:00 | 3:00 |
表1:测量详情。
补充图1:细胞外通量分析仪TYH缓冲液中小鼠精子的兴奋。小鼠精子的酪氨酸残留物在孵育期间(0- 90分钟)在(A)TYH中孵育后检测到的酪氨酸残留物的磷酸化,在(A)TYH中,含有25 mM HCO3-3mg/mL BSA和20 mM HEPES,或(B)细胞外通量分析仪TYH,带5 mM db-cAMP, 500 μM IBMX 和 1 mM HEPES,使用 β-磷脂素抗体检测。请点击此处查看此图的较大版本。
补充文件1:波测模板,用于检测小鼠精子补充期间糖解和氧化磷酸化的变化。波式桌面软件在填写注册表(www.agilent.com/en/products/cell-analysis/cell-analysis-software/data-analysis/wave-desktop-2-6)后可免费下载,并安装在窗口 7、8 或 10(Mac OSx 10.11(或更高版本)上,并带有 Parallels 12(或更高版本)。因此,波模板可以独立于细胞外通量分析仪生成,导出后导入到任何细胞外通量分析仪的波软件中。请点击此处查看此文件(右键单击下载)。
补充文件 2: 图形垫棱镜文件导出从波软件与模范数据分析。请点击此处查看此文件(右键单击下载)。
在缺乏某些代谢基质或关键代谢酶的情况下,精子的丧失表明能量代谢是支持成功受精的关键因素。细胞激活过程中的代谢开关是其他细胞类型的一个既定概念,然而,我们才刚刚开始了解精子如何适应细胞加速过程中日益增长的能源需求。我们使用细胞外通量分析仪开发了一种易于应用的工具,用于实时监测精子增生过程中糖解和氧化磷酸化的变化。在细胞外H+和O2的变化检测与荧光量固定到传感器探头是微创的,四个单独操作的注射端口允许操作与药理抑制剂或活化剂在显卡过程之前或期间的不同时间点操作。该协议只给出了小鼠精子上限实验的一个示例。为了简化对结果的解释,我们选择了这个示例性的实验,其中葡萄糖被用作唯一的能量来源。根据实验的目标,这些条件是可变的,可以并行测量多达 12 种不同的条件(即葡萄糖与葡萄糖和丙酮酸盐等不同能量源)。此外,四个独立的注射端口允许在引注之前或期间的任何所需时间点注射药理活化剂和/或抑制剂。这为将细胞外通量分析仪用作半高通量筛选设备开辟了可能性。与小鼠精子类似,在人类或牛等其他物种中,精子在细胞内如何改变新陈代谢仍然是令人费解的。该协议可以很容易地调整;因此,我们建议在开始真正的实验之前,每次优化精子浓度。
该协议的最大限制是,高质量的结果只有在没有碳酸氢盐的情况下才能实现。中的碳酸氢盐是射精后启动精子的排泄信号级联的生理信号。碳酸氢盐激活可溶性亚丁利环酶(sAC;ADCY10),它催化ATP转换为cAMP23。cAMP的增加然后驱动由蛋白质激酶A介导的信号级联,最终导致目标蛋白(例如,孔通道、代谢酶和结构蛋白24、25)的下游酪氨酸磷酸化。这种针对碳酸氢盐的限制是通过注射碳酸氢盐活性sAC,cAMP的产品来克服的。我们使用5 mM的可渗透cAMP模拟db-cAMP与广泛特异性磷酸二酯酶抑制剂IBMX并行,防止磷酸酯酶迅速降解db-cAMP。这种组合有效地启动cAMP调节的电容信通通通路后sAC激活与碳酸氢盐类似的动力学(补充图1)。与碳酸氢盐平行,胆固醇接受器(例如BSA)用于在体外对刚从射精的精子或从cauda表皮解剖的精子进行解剖。白蛋白不能注射,因为它堵塞了注射口,因此,在电镀细胞之前需要添加到精子缓冲液中。在BSA存在与否的情况下进行实验表明,在精子增强过程中ECAR和OCR的增加与胆固醇接受者无关。然而,在精子缓冲液中存在BSA减少了不同井和实验之间检测到的ECAR和OCR值的波动;因此,我们强烈建议在精子缓冲液中加入BSA,以增加可重复性。
将精子从考达表皮中分离会导致精子受到表皮液的污染。为了避免由于成分而产生人工结果,我们建议在使用精子进行实验之前,先清洗精子两次。精子浓度和电镀是决定实验成功的另一个关键因素。为了获得可靠的结果,制造商建议初始 ECAR 值大于 10,OCR 值大于 20。该协议中使用的精子浓度得到优化,使每个条件测量的7-8口井的平均基底ECAR和OCR值分别高于10和20。自由移动的精子干扰细胞外H+和O2的变化的检测。因此,将所有精子的头部粘附在板底至关重要。我们发现,通过涂覆ConA(一种与外体膜相互作用的植物叶酸,通常用于杂技测定26)和轻轻旋转板(参见步骤2.7.3),成功粘附精子。用这种方法,精子仅通过头部被本地化到井底,这样他们仍然可以自由移动其旗子,并在封顶期间改变其鞭球击打模式。
精子不断挤出H+和O2在两者,非电容和电容状态。为了尽可能准确地确定初始 ECAR 和 OCR,在最后一个洗涤步骤后尽快开始实验至关重要。这可以通过在精子游出时加载传感器盒,并在第一次洗涤步骤之前在细胞外通量分析仪中启动该方法来实现。校准仪器大约需要与清洗和电镀电池和旋转板相同的时间。制造商建议使用平衡阶段,以便在测量第一个真实数据点之前使系统稳定下来。由于该协议包括启动电容前的 8 个测量周期,为了节省时间,此协议中不包括均衡步骤。
在测定过程中注射溶液并实时观察其对呼吸和糖解率的影响的能力是细胞外通量分析仪的一个关键特征。加载传感器盒是协议中的关键步骤之一,应谨慎执行。为了确保正确注入所有油井,每个系列的端口需要包含相同的体积,包括背景井。使用多通道移液器加载端口需要一些练习,但可变性和加载时间大大减少。我们强烈建议使用端口加载指南,但只能同时注入四个端口。还必须认识到,在装载过程中,注射量会逐渐增加,以补偿油井中增加的体积。装载传感器盒时,请务必不要将吸头完全插入端口。这可能会过早地将喷射溶液推入端口孔。在建立方法时,我们发现,将液体注入精子井会导致不受欢迎的注射伪影,这可能是由于井中精子的稀释和/或将精子从井底取代。第一次注射导致最大的注射伪影,所以我们在协议开始时将一个带有精子缓冲液的模拟注射器放入所有井中。
作者没有什么可透露的。
作者希望感谢洛克菲勒高通量和光谱资源中心的拉沃西尔·拉莫斯-埃斯皮里图博士的支持。
Name | Company | Catalog Number | Comments |
Reagents | |||
2-Deoxy-D-glucose | Sigma-Aldrich | D8375 | 2-DG |
3-Isobutyl-1-methylxanthine | Sigma-Aldrich | I7018 | IBMX; prepare a 500 mM stock solution in DMSO (111.1 mg/ml) and store in small aliquots |
Antimycin A | Sigma-Aldrich | A8674 | AntA; prepare a 5 mM stock solution in DMSO (2.7 mg/ml) and store in small aliquots |
Bovine serum albumin | Sigma-Aldrich | A1470 | BSA |
Calcium chloride | Sigma-Aldrich | C1016 | CaCl2 |
Concanacalin A, Lectin from Arachis hypogaea (peanut) | Sigma-Aldrich | L7381 | ConA |
Glucose | Sigma-Aldrich | G7528 | |
Hepes | Sigma-Aldrich | H0887 | |
Isothesia | Henry Schein Animal Health | 1169567761 | Isoflurane |
Magnesium sulfate | Sigma-Aldrich | M2643 | MgSO4 |
N6,2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate sodium salt | Sigma-Aldrich | D0627 | db-cAMP |
Potassium chloride | Sigma-Aldrich | P9333 | KCl |
Potassium dihydrogen phosphate | Sigma-Aldrich | P5655 | KH2PO4 |
Rotenone | Cayman Chemical Company | 13995 | Rot; prepare a 5 mM stock solution in DMSO (2mg/ml) and store in small aliquots |
Sodium bicarbonate | Sigma-Aldrich | S5761 | NaHCO3- |
Sodium chloride | Sigma-Aldrich | S9888 | NaCl |
Equipment and materials | |||
12 channel pipette 10-100 μL | eppendorf | ES-12-100 | |
12 channel pipette 50-300 μL | vwr | 613-5257 | |
37 °C, non-CO2 incubator | vwr | 1545 | |
5 mL cetrifuge tubes | eppendorf | 30119380 | |
50 mL conical centrifuge tubes | vwr | 76211-286 | |
Centrifuge with plate adapter | Thermo Scientific | IEC FL40R | |
Dissection kit | World Precision Instruments | MOUSEKIT | |
Inverted phase contrast microscope with 40X objective | Nikon | ||
OctaPool Solution Reservoirs, 25 ml, divided | Thomas Scientific | 1159X93 | |
OctaPool Solution Reservoirs, 25 mL, divided | Thomas Scientific | 1159X95 | |
Seahorse XFe96 Analyzer | Agilent | ||
Seahorse XFe96 FluxPak | Agilent | 102416-100 | Also sold as XFe96 FluxPak mini (102601-100) with 6 instead of 18 cartidges. |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。