Method Article
在此过程中生理相关的脑状态和正在进行的电活动完全取消后,执行从单个神经元长期在体内的细胞内记录,导致大脑电状态。动物的生理常数过渡到人工昏迷状态期间仔细监测。
顺便神经元过程信息既取决于它们的内在膜特性和对传入突触网络的动态。特别是,内源性产生的网络活动,这强烈变化作为警戒的状态的函数,显著调制神经元的计算。探讨自发性脑动态如何影响不同的单个神经元"综合性能,我们开发了包括由高剂量戊巴比妥钠的全身注射的方式在体内抑制所有大脑活动的老鼠了新的实验策略。皮质活动,通过组合电图(脑电图)和细胞内记录连续监测正在逐渐放慢,从而导致稳定的等电轮廓。这种极端的脑的状态,把老鼠进入深度昏迷,小心地通过在整个实验测量动物的生理常数监视。细胞内řecordings允许我们表征和比较嵌入到生理学相关皮质动力学,如在睡眠 - 觉醒周期遇到了同样的神经元的综合性能,并且当大脑完全沉默。
在没有任何环境刺激或行为的任务中,"静止"大脑产生可从头皮进行记录的电活动的连续流,如脑电图(EEG)波。此内源性脑活动的细胞内相关成分的特征在于,背景膜的电压波动(也称为"突触噪声"),这是由反映传入网络1,2的正在进行的活动兴奋性和抑制性突触电位的组合。这种自发活动的频率和振幅与警觉的不同状态而变化。阐明网络活动的单神经元的兴奋性和反应能力的影响是神经科学的3,4的主要挑战之一。
许多实验和计算研究探索持续突触活动对综合propertie功能的影响神经细胞的的。然而,由背景突触噪声影响不同的神经元的参数的作用仍然是难以捉摸的。例如,膜去极化的平均等级已经发现与感觉输入触发的动作电位的能力正5,6或负7-9相关。此外,虽然一些调查表明,膜电位的波动,从传入的突触输入的连续变化的数据流得到的,强烈地受到调制的其输入输出关系3,10-13增益影响单个神经元的响应,其他指示通过分流抑制介导的细胞膜输入电导变化是足以调节神经元增益无论膜的波动14,15的幅度。最后,在清醒的动物进行最近的研究强调如何在单个神经元感觉信息的处理需要依靠警惕一个的状态ND当前的行为需求16,17。
阐明一个给定的处理的在高度互连的系统中的功能性作用一个直接的策略是,以确定如何其缺乏特异性改变系统的运作。该方法已在神经科学研究利用实验病变或不同脑区18-21的灭活,或特定的离子通道22,23的药理学阻断广泛使用,例如。值得注意的是,已经在体内施加到推出功能连接和网络动态如何影响单细胞计算24-27。然而,迄今为止本地操作旨在阻断神经元的放电和/或扰乱它们的基本生物物理特性可以是部分有效的,被限制为相对小的脑体积28。
为了克服这些限制,我们开发了体内实验方法进行新的大鼠来比较记录在一个给定的大脑状态单个神经元, 即,嵌入在一个特定的网络的动态,到整个大脑突触活动29的完全抑制后所得的电生理特性。在控制条件下,可能产生两个不同的皮质动态。睡眠就像electrocorticographic(脑电图)模式是由中等剂量戊巴比妥钠注射引起。另外,小振幅的快波脑电图相媲美的大脑皮层的活动清醒状态(醒状图案)基本可以用芬太尼注射产生。接着,同时保持相同的脑电图和细胞内记录时,由高剂量的戊巴比妥钠,其特征在于等电脑电图和细胞内活性的全身注射得到的内源性脑电活性的完全沉默。因为这样一个极端的昏迷诱导可能产生致命的consequen生物功能CES上,生理变量的仔细和连续监测是必不可少的。因此,我们认真随后心脏跳动频率,潮气末CO 2浓度(ETCO 2)时,O 2饱和度(SPO 2)和大鼠的核心温度在整个实验。
我们评估期间使用锋利微电极,其特别适合于在体内长时间稳定记录这些不同状态的单神经元特性。此处描述的方法,可以与其它电和成像方法相结合,并且可以延伸到其他的动物模型。
所有的程序均按照欧盟的指导方针进行(指令63分之2010/ EU),并通过动物实验达尔文伦理委员会的批准。在这里我们描述我们在我们的实验室常规使用的方法,但是大多数步骤可以适于以匹配每个人的具体需要。
1.手术准备
注:所有的切口和压点应与局部麻醉(利多卡因或布比卡因)反复渗透。本程序是终端,如果需要的无菌制剂几个修改应来实现。
2.细胞内记录
3.诱导等电国家
诱导和维持的等电脑状态是在体内实验过程的细腻。它已被证明是一种强大的工具,直接研究了神经元兴奋性和传递函数29的皮质的网络活动的影响。 图1示出了( 图1A之前多参数监控,包括脑电图和重要的常量,动物的生理状态的)和之后( 图1B)诱导的等电状态的。
图1.在控制条件等电生理参数监测。
A和B,在活跃的状态皮质(A)和潜艇脑电图(顶部痕迹)和生理参数的同时记录equent等电周期(B)中。核心温度(温度),ETCO 2和血氧饱和度在整个实验中基本稳定。心脏跳动速度,相比之下,递减后的等电状态的诱导(从382到349次/分),作为上看到心电图。 请点击此处查看该图的放大版本。
时的控制会话,所述生理参数是类似于在健康和清醒动物32-35测定的等电状态的诱导后不受影响,除了心脏速率略微减慢( 图1)。这 是因为缺氧39或高二氧化碳40可以显着地改变神经细胞的兴奋,因此可以在一个双头引入严重的偏差的重要点 Ÿ探索神经综合性能的大脑状态依赖调制。
我们从两个不同的初始条件模仿皮质动力学在睡眠的早期阶段( 图2AA,左图)或醒来( 图2AB,左图)中内源性生成的所得到的等电状态。这些活性状态要么被戊巴比妥钠(睡眠等)或芬太尼注射诱导(醒来一样)。在这两种情况下,高剂量的戊巴比妥钠的随后的注射导致了脑电图和自发性活动的同时记录的神经元( 图2AA和b,右面板),因此称为等电的完全废除。抑制正在进行突触活动导致了神经元膜电位( 图2B)的一个显著稳定超极化。
T"FO:保together.within页="1">为了说明这一点极端大脑状态的功能的影响,我们提取等电神经元的被动和主动内在性能,并与相应的初始状态期间测量了比较。使用这种策略,我们已经表明,神经元可以发射动作电位响应于等电状态期间去极化电流,这表明在细胞内注射,他们甚至背景突触活性( 图3AA和b,等电)的完全抑制之后仍然完全可激发。此外,我们发现神经元的传递函数,通过测量由去极化增加强度(FI关系)的电流的步骤引起的发射频率进行评估,为右移与初始活性的条件下,指示在神经元兴奋性弱的输入( 图3B)的灵敏度的降低。相应的神经元的增益, 即,将FI曲线的斜率,保持不变或控制状态是睡眠-或唤醒型,分别为( 图3B)时降低。令人惊奇的是,神经元的表观输入电阻没有显著在缺乏突触驱动的改性相比对照活性的条件( 图3AA,b)中 。更多的成果,包括人口分析,并在积极和等电条件的神经元的时间放电模式的量化,是我们最初的论文29可用。
图3.对膜性能和投入产出关系的三个皮层活动模式的比较影响。
(A)Voltag睡眠等时体感皮层神经元去极化和超极化电流脉冲(底部痕迹)电子反应(中间的痕迹)(A a)和苏醒样(A B)脑电图模式(最高记录)和突触活动的剥夺后(等电)。膜输入电阻(R M,数值表示)是由超极化电流脉冲注射(-0.4 NA)引起的电压降(灰色的痕迹,20个试验平均值)测量。 (B)的相应的FI曲线,提供在面板(A)中所示的神经元的传递函数。在射速是为了应对不断增加去极化强度的电流脉冲(200毫秒时间)测量。每个电流强度施加20次和相应的燃烧率的平均值。虚线表示(A)中所示的细胞反应。这个数字已被修改,经许可,摘自参考文献29。上传/ 53576 / 53576fig3large.jpg"目标="_空白">点击此处查看该图的放大版本。
我们在这里描述在两个网络和细胞水平在体内自发脑电活动抑制的新方法。这个过程导致了极端的大脑状态,被称为电昏迷41。从临床观点来看,这样的大脑电活动是最严重的异常,可以在脑电图中看到。它主要以不可逆转的昏迷相关,所有患者要么垂死或继续在持续植物人状态42,但可以通过抑制中枢神经系统药物(如硫喷妥钠)的中毒时造成至少部分逆转,一个偶然的低温42或窒息性心脏骤停43。在我们的实验范例,等电状态逐渐由高剂量的戊巴比妥钠的全身注射,其中第一快速诱导的脑电图频率含量的减少,那么,"突发抑制"模式实现41,42,最终导致一个完全平坦的脑电图。在细胞内水平,自发性活动的消失遵循具有去极化的同时减少与超极化膜电位波动相似的时间过程。因此,可以假设戊巴比妥钠注射第一增加突触抑制传输导致减少皮层神经元击发活性,兴奋性和抑制性突触传递终于导致等电脑电图和细胞内活动29,44的逐步取消。从主动到等电位脑电图模式类似的转换可以在其他麻醉剂的管理,如氯胺酮(个人观察)或异氟醚45,46下获得。
该过程可能会出现相对比较简单。然而,由于非常深昏迷诱导,维持内基本生理变量正常范围是在实验的成功至关重要。在ETCO 2的波动变化可以是粘液栓在气管形成的结果。在这种情况下,呼吸机应断开和粘液迅速吸出或通过气管套管一扫而光。此外,该制剂的机械稳定性为细胞内记录的关键。因此,特别应该努力通过主体相对于动物的仔细调节的头部,同时保持适当的气管导管对准,以减少血管和呼吸脉动,并通过施加琼脂糖或对开颅硅氧烷弹性体。它也有必要通过麻痹剂的注射,以避免自发肌肉收缩。最后,环境振动和电噪声应减少尽可能。其他出版物细节体内准备最佳允许稳定的细胞内或细胞膜片钳的必要步骤谁LE-细胞记录29,47-50。
脱钩神经元的内在膜性能和网络动态的能力是必不可少的解剖由单个神经元在他们的高度连接的环境下处理信息的机制。正如前言所说,以前专门的根本神经科学这一核心问题研究导致冲突的结果,部分是由于神经元和调查网络和各种实验条件的特定功能, 包括体外 VS 体内的准备,最终的使用不同的麻醉程序(见例如29,36,51)。我们建议,本方法可以用于验证和可能调和,从体内实验在体外制备和从还原获得的发现。事实上,它允许直接检查,并在相同的神经元,并在相同的实验程序的过程中比较传入神经突触输入不同的模式的影响,从唤醒状动力学完成不活动,在活的动物中的神经元综合性能。
此协议的一个显着特点是,一旦掌握了,它可以与其它的实验技术,如多站点表面和深度脑电图记录,基于调查基因编码荧光指示剂和大脑甚至血流动力学和代谢成像进行组合,来调查多维等电脑的性质。作为临床和诊断的观点,因为我们表明,神经元是仍然持久等电昏迷中激发的,这将是相关的,以测试皮质功能,例如感觉信息的处理中,沉浸在脑的这样一种病理状态的患者和动物模型不活动。
The authors have nothing to disclose.
这项工作是由来自基金会法国,研究所国家德拉桑特的Et德拉RECHERCHE MEDICALE,皮埃尔和玛丽·居里大学和程序"INVESTISSEMENTS德前途报"ANR-10 IAIHU-06的资助。
Name | Company | Catalog Number | Comments |
Sodium Pentobarbital | Centravet | Pentobarbital | |
Ketamine 500 | Merial | Imalgène 500 | |
Fentanyl | Janssen-Cilag | Fentanyl | |
Xylocaine | Centravet | Xylovet | |
Gallamine triethiodide | Sigma | G8134 | |
ECoG amplifier | A-M Systems | AC amplifier, Model 1700 | |
Intracellular amplifier | Molecular Devices | Axoclamp 900A | |
Data acquisition interface | Cambridge Electronic Design | CED power 1401-3 | |
Data analysis software | Cambridge Electronic Design | Spike2 version 7 | |
micromanipulator | Scientifica | IVM-3000 | |
Capillary Puller | Narishige | PE-2 | |
Borosilicate glass capillaries | Harvard Apparatus | GC150F-10 | |
Silver wire 0.125 mm (intracellular recording) | WPI | AGT0525 | |
Ag-AgCl reference | Phymep | E242 | |
Silver wire 0.25 mm (ECoG recording) | WPI | AGT1025 | |
Artificial respiration system | Minerve | Alpha Lab | |
Physiological parameters monitoring | Digicare | LifeWindow Lite | |
Heating Blanket | Harvard Apparatus | 507215 | |
Stereomicroscope | Leica | M80 | |
Scissors | FST | 15005-08 | |
Forceps Dumont #5 | FST | 11295-10 | |
Forceps Dumont #5SF | FST | 11252-00 | |
IP Polyurethane catheter - 0.43x0.69 mm | Instech | BTPU-027 | |
Silicon elastomere | WPI | KWIK-CAST | |
Dental drill | NSK | Y1001151 and P496 | |
Surgical glue | 3M | vetbond |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。