Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - The University of Arizona
Demonstrating Author: Luisa Ikner
The quality of water destined for use in agricultural, recreational, and domestic settings is of great importance due to the potential for outbreaks of waterborne disease. Microbial agents implicated in such events include parasites, bacteria, and viruses that are shed in high numbers in the feces of infected people and animals. Transmission to new and susceptible hosts may then occur via the fecal-oral route upon ingestion of contaminated water. Therefore, the ability to monitor water sources for the presence of pathogenic microorganisms is significant in order to ensure public health.
Due to the sheer number and variety of potential fecal-oral pathogens that may be present in water and their variable concentrations, it is impractical and expensive to assay directly for each one of them on a regular basis. Therefore, the microbiological assays for water quality monitoring employ coliform indicator bacteria. Coliforms comprise, in part, the normal intestinal microflora of warm-blooded mammals, are non-pathogenic, and are consistently excreted in the feces. Therefore, the detection of coliform bacteria in water means that a fecal release occurred, and that harmful pathogenic microorganisms may also be present.
The membrane filtration technique is used to assess the microbiological quality of water by assaying for fecal indicator bacteria. A quantity of water (e.g. 100 mL) is passed through a specialized membrane filter with a minimal mean pore size of 0.45 µm, facilitating the capture of bacteria, as they are approximately 1-µm in size. Following filtration, the membrane is carefully applied to a specialized agarose culture medium, and incubated under the conditions appropriate to culture the target microorganisms.
When applied for use in water quality monitoring, membrane filtration is most ideal for low turbidity sources such as drinking water, swimming pools, and natural recreational waters such as lakes and reservoirs. Waters high in particulate matter (e.g. raw sewage) will result in fouling of the filter; therefore, only smaller volumes (e.g. 100 mL) can be analyzed. Membrane filtration is also not practical for water sources with large numbers of background (or non-coliform) bacteria, which can increase the difficulty of enumerating the target coliform bacteria on the agarose medium following incubation.
This video demonstrates the collection of drinking water and environmental water samples, the membrane filtration of the samples, and the enumeration of several types of fecal indicator bacterial colonies using specialized agarose growth media including total coliforms, fecal coliforms, and fecal enterococci. Tests conducted further in order to verify presumptive colonies are also shown.
1. Water Sample Collection and Processing
2. Colony Enumeration
3. Colony Verification
Fecal Bacterial Indicator | Recommended Media (Incubation Temperature, Time)1 |
Total coliforms | LES Endo Agar (35 ± 5 °C, 24 h) M-Endo Medium (35 ± 5 °C, 24 h) |
Fecal coliforms | m-FC Medium (44.5 ± 0.2 °C, 24 h) |
Fecal enterococci | m Enterococcus Agar (35 ± 0.5 °C, 48 h) |
Table 1. Commonly-used culture growth media for the detection of fecal bacterial indicators in environmental samples
1 As recommended by the Standard Methods for the Examination of Water and Wastewater (American Public Health Asssociation and the American Water Works Association, 22nd Edition, 2012)
Membrane filtration is used in virus capture and concentration from water. Human pathogenic viruses carry a net negative charge in aquatic solutions, and are often present at low levels in water sources. Therefore they must be concentrated prior to analysis. Membrane filtration is but one capture method for this purpose, and employs a negatively-charged filter. Water samples (e.g. 1-L) of interest are amended with a salt solution (e.g. magnesium chloride) to impart a positive charge to the viruses, thereby facilitating their adsorption to the negatively-charged HA membrane filter as the water is filtered. A low concentration acid solution is used to rinse the membrane and rid it of excess salts. A low concentration and volume of sodium hydroxide is then used to release the viruses from the filter prior to further concentrations and analyses (e.g. cell culture infectivity assays or quantitative PCR).
Membrane filtration is also utilized in the production of high-purity process water for industrial use. Many industries require highly purified water for their operational processes. Membrane filtration (e.g. nano-filtration) serves to remove contaminants including dissolved metals and salts from water. Membrane filtration is also used in the desalination of salt water to produce potable water.
Skip to...
Videos from this collection:
Now Playing
Environmental Microbiology
39.3K Views
Environmental Microbiology
359.3K Views
Environmental Microbiology
126.4K Views
Environmental Microbiology
100.2K Views
Environmental Microbiology
42.2K Views
Environmental Microbiology
57.3K Views
Environmental Microbiology
28.8K Views
Environmental Microbiology
44.6K Views
Environmental Microbiology
40.4K Views
Environmental Microbiology
47.8K Views
Environmental Microbiology
29.5K Views
Environmental Microbiology
40.7K Views
Environmental Microbiology
184.3K Views
Environmental Microbiology
295.9K Views
Environmental Microbiology
13.8K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved