Source: Laboratory of Dr. Khuloud Al-Jamal - King's College London
Mass spectrometry is an analytical chemistry technique that enables the identification of unknown compounds within a sample, the quantification of known materials, the determination of the structure, and chemical properties of different molecules.
A mass spectrometer is composed of an ionization source, an analyzer, and a detector. The process involves the ionization of chemical compounds to generate ions. When using inductively coupled plasma (ICP), samples containing elements of interest are introduced into argon plasma as aerosol droplets. The plasma dries the aerosol, dissociates the molecules, and then removes an electron from the components to be detected by the mass spectrometer. Other ionization methods such as electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) are used to analyze biological samples. Following the ionization procedure, ions are separated in the mass spectrometer according to their mass-to-charge ratio (m/z), and the relative abundance of each ion type is measured. Finally, the detector commonly consists in an electron multiplier where the collision of ions with a charged anode leads to a cascade of increasing number of electrons, which can be detected by an electrical circuit connected to a computer.
In this video, the procedure of ICP-MS analysis will be described by the detection of 56Fe as an example.
ICP-MS combines a high-temperature ICP (inductively coupled plasma) source with a mass spectrometer.
Samples need to be in ionic form prior to entering the mass analyzer in order to be detected. The digestion process of solid samples consists in the incubation of solid samples into strong and oxidizing acid at high temperature and for a prolonged period of time depending on the metal analyte. The sample is introduced as an aerosol into the ICP plasma (temperature of 6,000–10,000 K) to be converted into gaseous atoms, which are ionized.
The most commonly used mass analyzer is the quadrupole mass filter. It works as an electrostatic filter that only allows ions of a single mass-to-charge ratio (m/z) to reach the detector at a given time. It can separate up to 15,000 daltons (Da) per second and therefore is considered to have simultaneous multi-elemental analysis properties. ICP-MS is a very sensitive method that allows the detection of elements with concentrations below particle per billion (ppb), and below particle per trillion (ppt) for certain elements.
Finally, the detector system converts the number of ions striking the detector into an electrical signal. By using calibration standards (samples of known concentration for a certain element), it is possible to assess the concentration of a sample for one or several elements of interest.
1. Cleaning of Polycarbonate Tubes
2. Sample Preparation and Digestion
3. Preparation of the Instrument
4. Selection of User's Method and Sample List
ICP-MS analysis of samples containing iron oxide nanoparticle is shown below. A standard curve was carried out using known concentration of 56Fe (Figure 1). The correlation coefficient being close to 1 (R2 = 0.999989) showed the good linear relationship between the sample concentrations and the intensity measured by the detector. Samples of interests showed values within the calibration range (Figure 2). The concentrations calculated by the software were then adjusted according to the dilution carried out during the protocol. The present protocol described a dilution of 1/50 following the dilution in acid (1/10) and in Mili-Q water (1/5). For example, a concentration of 51.427 µg/L was measured for the sample number 51 (Figure 2). The concentration of the original sample was 50x higher corresponding to 2.57 mg/L.
Figure 1. Calibration curve for 56Fe measurements. Four standard points (0.01, 0.1, 1, and 10 µg/mL) show a correlation coefficient (R2) of 0.999989. This confirms the good linear relationship between the signal intensity detected and the concentrations of reference.
Figure 2. Representative results following ICP-MS measurements on iron oxide nanoparticle samples. The concentration of each diluted sample is automatically calculated according to the defined calibration curve.
The environmental and geological fields represent the first use for ICP-MS for example to measure contaminants present in water, in the soil, or in the atmosphere. The presence of contaminants at high concentration in tap water such as Fe, Cu, or Al can be monitored using ICP-MS.
The medical and forensic science fields also use ICP-MS detection. In case of suspicion of a metal poisoning such as arsenic, samples such as blood and urine can be analyzed using ICP-MS. This technique can also provide valuable information in case of pathology involving metabolic concerns or hepatological issues resulting in the poor excretion of certain elements.
ICP-MS allows the quantification of metals in any material. In Figure 3, the concentration of Fe was measured in nanoparticles and related to their magnetic resonance imaging (MRI) properties. ICP-MS provides a reliable quantification of Fe of different nanoparticles to discriminate which nanoparticles are the most efficient for imaging application.
Another application is to study the biodistribution of nanoparticles associated with metals. Figure 4 presents the organ biodistribution of nanoparticles containing iron oxide in mice following intravenous injection. At 24 h, each organ was collected and digested in concentrated nitric acid until full organ digestion was achieved. The 56Fe concentration was quantified by ICP-MS. Results show higher concentration of 56Fe in liver and spleen for mice injected with nanoparticles than in organs from naïve animals. Therefore, it was concluded that nanoparticles accumulate mostly into liver and spleen organs.
Figure 3. Magnetic resonance imaging (MRI) measurement of nanoparticles function of their Fe concentration. Five concentrations of iron were used (0.25, 0.5, 0.75, 1, and 1.25 mM) that were imaged for their MRI properties (relaxation rate, R2*).
Figure 4. Biodistribution of iron oxide nanoparticles following intravenous injection in mice. Naïve samples show the basal organ level of iron in untreated mice. Following the injection of nanoparticles containing iron oxide, the quantity of iron in certain organ increases which is associated to the accumulation of nanoparticles.
Skip to...
Videos from this collection:
Now Playing
Analytical Chemistry
112.0K Views
Analytical Chemistry
84.3K Views
Analytical Chemistry
204.4K Views
Analytical Chemistry
319.5K Views
Analytical Chemistry
795.2K Views
Analytical Chemistry
622.2K Views
Analytical Chemistry
51.1K Views
Analytical Chemistry
25.4K Views
Analytical Chemistry
281.3K Views
Analytical Chemistry
383.3K Views
Analytical Chemistry
264.1K Views
Analytical Chemistry
93.4K Views
Analytical Chemistry
86.9K Views
Analytical Chemistry
51.3K Views
Analytical Chemistry
124.5K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved