Oturum Aç

An applied magnetic field causes the electrons present in the molecule to circulate, setting up a local diamagnetic current within the molecule. The local diamagnetic current arising from circulating sigma-bonding electrons induces a magnetic field, Blocal that opposes the applied magnetic field, B0. The effective magnetic field experienced by these nuclei is given by the difference between the applied and local magnetic fields in a phenomenon called local diamagnetic shielding. Essentially, Blocal increases with the electron density surrounding the nuclei, leading to increased shielding and a lower Beffective. Since electron densities vary within a molecule, nuclei in the same molecule are shielded to different extents and experience different effective fields. A nucleus in an electron-dense environment is well-shielded from the applied magnetic field and experiences a lower Beffective. Consequently, the energy required to flip its spin is less than that required for a poorly shielded nucleus in electron-poor surroundings. Thus, shielded nuclei experience resonance at lower frequencies than deshielded nuclei. Resonance frequencies are plotted on the NMR spectrum, making these spectra sensitive to diamagnetic shielding.

Etiketler

Diamagnetic ShieldingLocal Diamagnetic CurrentMagnetic FieldElectron DensityEffective Magnetic FieldNMR SpectrumResonance FrequenciesSigma bonding ElectronsShielding ExtentDeshielded Nuclei

Bölümden 7:

article

Now Playing

7.13 : Diamagnetic Shielding of Nuclei: Local Diamagnetic Current

Principles of Nuclear Magnetic Resonance

778 Görüntüleme Sayısı

article

7.1 : Nuclear Magnetic Resonance (NMR): Overview

Principles of Nuclear Magnetic Resonance

1.8K Görüntüleme Sayısı

article

7.2 : Atomic Nuclei: Nuclear Spin

Principles of Nuclear Magnetic Resonance

1.4K Görüntüleme Sayısı

article

7.3 : Atomic Nuclei: Nuclear Magnetic Moment

Principles of Nuclear Magnetic Resonance

976 Görüntüleme Sayısı

article

7.4 : Atomic Nuclei: Nuclear Spin State Overview

Principles of Nuclear Magnetic Resonance

786 Görüntüleme Sayısı

article

7.5 : Atomic Nuclei: Nuclear Spin State Population Distribution

Principles of Nuclear Magnetic Resonance

882 Görüntüleme Sayısı

article

7.6 : Atomic Nuclei: Larmor Precession Frequency

Principles of Nuclear Magnetic Resonance

973 Görüntüleme Sayısı

article

7.7 : Atomic Nuclei: Magnetic Resonance

Principles of Nuclear Magnetic Resonance

583 Görüntüleme Sayısı

article

7.8 : Atomic Nuclei: Nuclear Relaxation Processes

Principles of Nuclear Magnetic Resonance

577 Görüntüleme Sayısı

article

7.9 : Atomic Nuclei: Types of Nuclear Relaxation

Principles of Nuclear Magnetic Resonance

215 Görüntüleme Sayısı

article

7.10 : NMR Spectrometers: Overview

Principles of Nuclear Magnetic Resonance

934 Görüntüleme Sayısı

article

7.11 : NMR Spectrometers: Radiofrequency Pulses and Pulse Sequences

Principles of Nuclear Magnetic Resonance

677 Görüntüleme Sayısı

article

7.12 : NMR Spectrometers: Resolution and Error Correction

Principles of Nuclear Magnetic Resonance

588 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır