Oturum Aç

Kinetic studies of ionization of a tertiary halide in a protic solvent suggest that only the substrate participates in the rate-determining step (slow step). The nucleophile is involved only after the slowest step. The SN1 reaction takes place in a multiple-step mechanism.

Firstly, the haloalkane ionizes to generate a carbocation intermediate and a halide ion. This heterolytic cleavage is highly endothermic with large activation energy. The ionization of the substrate, facilitated by a polar protic solvent, is the slowest of all steps, making it the rate-determining step of an SN1 reaction. The ions formed are stabilized through solvation. In the second step, the reactive carbocation intermediate behaves as a strong electrophile and is attacked by the nucleophilic solvent molecule that quickly donates an electron pair to generate an oxonium ion. This process is exothermic. In the third step, the solvent abstracts a proton from the oxonium ion to yield the final nucleophilic substituted product.

Thus, the SN1 reaction consists of two core steps for substitution and an additional step of proton loss. The mechanism further suggests that several factors such as the stability of the carbocation, the nature of the leaving group, and the nature of the solvent used, favor the SN1 mechanism.

Etiketler

SN1 ReactionMechanismKinetic StudiesIonizationTertiary HalideProtic SolventRate determining StepNucleophileMultiple step MechanismCarbocation IntermediateHalide IonHeterolytic CleavageActivation EnergyPolar Protic SolventSolvationElectrophileOxonium IonExothermicNucleophilic Substituted ProductProton LossStability Of CarbocationLeaving GroupNature Of Solvent

Bölümden 6:

article

Now Playing

6.12 : SN1 Reaction: Mechanism

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

11.3K Görüntüleme Sayısı

article

6.1 : Alkil Halojenürler

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

15.4K Görüntüleme Sayısı

article

6.2 : Nükleofilik Sübstitüsyon Reaksiyonları

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

15.5K Görüntüleme Sayısı

article

6.3 : Nükleofiller

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

12.7K Görüntüleme Sayısı

article

6.4 : Elektrofiller

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

10.0K Görüntüleme Sayısı

article

6.5 : Gruplardan Ayrılma

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

7.2K Görüntüleme Sayısı

article

6.6 : Karbokatyonlar

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

10.7K Görüntüleme Sayısı

article

6.7 : SN2Reaksiyonu: Kinetik

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

8.0K Görüntüleme Sayısı

article

6.8 : SN2Reaksiyonu: Mekanizma

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

13.6K Görüntüleme Sayısı

article

6.9 : SN2 Reaksiyonu: Geçiş Durumu

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

9.2K Görüntüleme Sayısı

article

6.10 : SN2 Reaksiyonu: Stereokimya

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

9.0K Görüntüleme Sayısı

article

6.11 : SN1 Reaksiyonu: Kinetik

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

7.5K Görüntüleme Sayısı

article

6.13 : SN1 Reaksiyonu: Stereokimya

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

8.1K Görüntüleme Sayısı

article

6.14 : Ürünleri Tahmin Etme: SN1 ve SN2

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

13.1K Görüntüleme Sayısı

article

6.15 : Eliminasyon Reaksiyonları

Alkil Halojenürlerin Nükleofilik Sübstitüsyon ve Eliminasyon Reaksiyonları

12.9K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır