Method Article
We demonstrate the transmission of multiple independent signals through a multimode fiber using wavefront shaping employing a single spatial light modulator. By modulating the wavefront for each signal individually, spatially separated foci are transmitted. Potential applications are multiplexed data transfer in communications engineering and endoscopic light delivery in biophotonics.
Передача нескольких независимых оптических сигналов через многомодовому волокну осуществляется с использованием волнового фронта формования с тем, чтобы компенсировать искажение света при распространении в волокне. Наша методика основана на цифровой оптической ОВФ с использованием только один пространственный модулятор света, где оптический волновой фронт индивидуально модулированный в различных регионах модулятора, один регион за световым сигналом. Цифровые методы оптического фазового сопряжения считаются быстрее, чем другие волнового фронта формирования подходов, когда (например) выполняется полное определение поведения распространения волны волокна. В отличие от этого, представленный подход времени эффективно, так как оно требует только один калибровочный каждого светового сигнала. Предлагаемый метод потенциально подходит для пространственного мультиплексирования с разделением в технике связи. Другие области применения являются эндоскопические доставки света в биофотонике, особенно в оptogenetics, где отдельные клетки в биологической ткани должны быть выборочно освещены с высоким пространственным и временным разрешением.
Передача нескольких световых сигналов через многомодового волокна (MMF) проявляется в инженерных коммуникаций 1 и биофотонике 2. В технике связи, пространственно-мультиплексирования с разделением (SDM), как полагают, является жизнеспособным решением для того, чтобы повысить пропускную способность оптических волокон для будущих приложений передачи данных выгоду от более эффективное использование ограниченного пространства, по сравнению с несколькими одномодовых волокон 3. В биофотонике, биологические образцы манипулируют светопередающих через ММФ эндоскопа 4. Например, независимый оптический контроль отдельных нейронов использованием MMF эндоскопы представляет интерес для оптогенетика с целью изучения нейронных сетей в мозге 5. Тем не менее, свет проецируется на вход ММФ фаской подвергается деформации вследствие смешивания мод и дисперсии при распространении к outpuт грань ММФ. В результате, распространение света изменяется, что делает передачу сигнала сложной задачей.
Wavefront методы формовки 6, 7 применяются в рассеивающих средах с использованием пространственных модуляторов света (SLM) и включить компенсации за искажения за счет рассеяния при распространении света 8. Есть итеративные подходы , которые позволяют оптимизировать вывод с использованием оптической обратной связи 9. Эти подходы довольно много времени из-за необходимости многочисленных итераций и высокой степенью свободы, что соответствует большому числу модуляторов элементов. Другой подход заключается в полностью определить искажения в пределах ММФ , описанной своей матрицей передачи 10. Если число мод, подлежащих передаче велик, это будет занимать много времени, а также. В отличие от этого, цифровой оптический фазовый конъюгации (ДОФХ) считаетсябыстро и выгодно Здесь, так как только несколько фокусных точек должны быть сформированы на выходной грани ММФ. Фазовые подходы конъюгации были также продемонстрированы для фокусировки или визуализации через биологические ткани 12, 13, 14.
До сих пор DOPC использовали для одного временного сигнала только 15, 16, и был применен для передачи света через ММФ 17. DOPC подход для нескольких независимых сигналов не было достигнуто. Мы разработали усовершенствованный метод DOPC , обеспечивающий независимую передачу нескольких световых сигналов с использованием индивидуального волнового фронта формируя для каждого сигнала , использующего однофазного только ОДС 18. С этой целью, ОДС сегментирован на области, по одному для каждого сигнала, подлежащего передаче. Предлагаемая экспериментальная установка изображена на рисунке 1, Где калибровка выполняется на стадии а) до фактической передачи происходит в б).
Рисунок 1: Экспериментальная установка. BS = расщепитель луча, ПЗС = прибор с зарядовой связью, OM = оптический модулятор, CMOS = комплементарный металл-оксид-полупроводник, HWP = полуволна пластины, L = линза, LP = линейный поляризатор, ММФ = многомодового волокна, цель OBJ = микроскоп, PBS = поляризационный расщепитель луча, SLM = пространственный модулятор света (фаза только) - только соответствующие пучки для (а) калибровки и (б) передачи изображены Пожалуйста , нажмите здесь , чтобы посмотреть увеличенную версию этой фигуры.
1. Сборка экспериментальной установки
2. Калибровка системы
3. передачи сигналов
Типичные выходные сигналы на дистальной стороне длиной 2 м волокна изображены на рисунке 2. Обратите внимание, что желаемое фокусное пятно (пик) сопровождается нежелательному спекл (фон), что связано с несовершенством DOPC как в принципе. Соответствующее отношение пиковой мощности к фону (PBR) составляет 53 (только сигнал 1 'на'), 36 (только сигнал 2 'на') и 20 (оба сигнала 1 и 2 'на') здесь, соответственно, , СКД может быть увеличена, когда волокно, которое поддерживает большее количество режимов (в настоящее время: 1710) используется.
Из - за конечной PBR, A приводит перекрестные помехи между выходными сигналами, которая визуализируется на рисунке 3. Перекрестные помехи между периодическими сигналами с частотами f1 и f2 составляет -24 дБ (от сигнала 2 до сигнала 1) и -29 дБ (от сигнала от 1 до сигнал 2).
ntent "ВОК: Keep-together.within-страница =" 1 ">
Рисунок 3: Временной частотный спектр передаваемого выходного сигнала 1 (слева) и 2 (справа). Amplitude [Au] Пожалуйста , нажмите здесь , чтобы посмотреть увеличенную версию этой фигуры.
Сборка экспериментальной установки (этап 1 в протоколе) требует тщательного выравнивания оптических элементов по отношению друг к другу. Наиболее важным аспектом является прямоугольным частота опорного пучков на SLM, чтобы обеспечить высокую PBR.
Для того чтобы повысить установку более двух передаваемых сигналов, могут быть использованы дополнительные светоделителей. В качестве альтернативы, волокно на основе реализации будет более компактной и надежной позволяет системе быть портативным для исследований в точке в биофотонике. Если доступ к одной стороне возможно только, основанные на модели калибровочные растворы 20 должны быть выполнены в качестве будущего шага. Чем больше сигналы передаются, тем больше мод потребуется так больше пикселей на обоих ОДС и камерой CMOS должны быть вовлечены для достижения PBR. К тому же, количество пикселей должно быть больше или равно числу мод. В рекламеусловие, размер пикселя ОДС должен быть в два раза больше наименьшего диаметра спекл на ближней стороне. Кроме того, рекомендуется, что ОДС имеет битовую глубину по крайней мере, четыре бита. Пиксель номер камеры, обозначенном с CMOS должно превышать число пикселов SLM. Тем не менее, вместо того , чтобы камеры CMOS может быть использован любой другой тип детектора, например , ПЗС. То же самое справедливо и для камеры, обозначенном с CCD.
Одним из недостатков предложенного способа является то, что источник света требует большой длины когерентности (низкая спектральная ширина полосы) для обеспечения помех в голограмме, необходимой для измерения фазы. Кроме того, система должна быть стабильной, т.е. никаких изменений волокна или оптической настройки между калибровки и передачи не являются допустимыми, которые быстрее , чем длительность калибровки, которая в настоящее время менее 1 сек. Для длинных волокон и высоких частот сигнала, дисперсии групповой скорости различных мод волоконныхкоторые должны быть приняты во внимание, и может ухудшить сигнал. Чтобы компенсировать это, может быть использован ГРАДИЕНТНОГО волокна или коррекция искажений пространственно - временным 21.
В отличие от предыдущей фазы подходов конъюгации, предложенный нами метод SDM можно использовать в приложениях, где независимые световые сигналы должны передаваться. методы фазового сопряжения имеют преимущество относительно производительности времени, по сравнению с итеративных подходов или полного определения матрицы.
Еще одно потенциальное поле приложение может быть эндоскопическое доставки света, например, на оптических ловушек или в оптогенетика. Для оптогенетика, наш метод имеет преимущество в отношении селективного освещения отдельных нейронов для того, чтобы анализировать поведение головного мозга и лучше понять нейродегенеративные заболевания.
The authors have nothing to disclose.
The financial support by DFG (German research foundation, project CZ 55/30-1) for parts of this work is gratefully acknowledged.
Name | Company | Catalog Number | Comments |
spatial light modulator | Holoeye | PLUTO-VIS-016 | |
CMOS camera | Mikrotron | MC4082 | |
diode-pumped solid state laser | Laser Quantum | torus 532 | |
CCD camera | IDS | U3-3482LE-M CMOS | camera; suitable as well |
lens 1 | Qioptiq | G063204000 | |
lens 2 | Qioptiq | G063203000 | |
lens 3 | Thorlabs | AC508-180-A-ML | |
multimode fiber | Thorlabs | M14L02 | |
beam splitters | Thorlabs | BS013 | 9x |
polarizing beam splitters | Thorlabs | PBS251 | |
mirrors | Thorlabs | PF10-03-P01 | 5x |
microscope objectives | Thorlabs | RMS20X | 2x |
half wave plates | Thorlabs | WPH10M-532 | 2x |
linear polarizer | Thorlabs | LPVISB050-MP2 | |
optical modulators | Thorlabs | MC2000B-EC | 2x |
linear and rotation stage for CMOS camera | Thorlabs | XYR1/M | |
fiber connector | Thorlabs | S120-SMA | 2x |
reducing ring for microscope objectives | Qioptiq | G061621000 | 2x |
xy adjustment for objective adapters | Qioptiq | G061025000 | 2x |
z translation mount for fiber adapter | Thorlabs | SM1Z | 2x |
rods for fiber alignment to objectives | Qioptiq | G061210000 | 8x |
mounts for lenses 1 and 2 plus two phantom mounts | Qioptiq | G061047000 | 4x |
rail carriers for objective and lens mounts | Qioptiq | G061372000 | 6x |
rail for rail carriers | Qioptiq | G061359000 | 2x |
adapter for CCD camera to 1 post | in-house | ||
adapter for laser to 4 posts | in-house | ||
mount for lens 3 | Thorlabs | LMR2/M | |
mounts for half wave plates | Thorlabs | RSP1D/M | 2 |
mounts for mirrors | Thorlabs | KM100 | 5x |
mount for linear polarizer | Thorlabs | RSP05/M | |
mounts for beam splitters and SLM | Thorlabs | KM100PM/M | 11x |
clamping arms for beam splitters and SLM | Thorlabs | PM4/M | 11x |
posts for mounts, rail carriers and adapters | Thorlabs | TR75/M | 29x |
holders for posts | Thorlabs | PH50/M | 29x |
pedestals for holders | Thorlabs | BE1/M | 29x |
clamping forks for pedestals | Thorlabs | CF125 | 29x |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены