JoVE Logo

Войдите в систему

6.8 : Impedance Combination

Consider a string of christmas lights, each bulb symbolizing an impedance element. In this series configuration, the flow of electric current remains uniform across every component. This behavior aligns with Kirchhoff's Voltage Law (KVL), which asserts that the total impedance in such a setup equals the sum of individual impedances—akin to resistors in series. It follows that the voltage from the power source is distributed proportionally among these components, adhering to the voltage division principle.

Equation1

However, the drawback of this series connection is evident when a single bulb fails, causing an open circuit that interrupts the entire current flow. christmas lights are typically arranged in a parallel configuration to ensure a continuous and steady power supply. This setup guarantees a constant voltage across each bulb, as per Kirchhoff's Current Law (KCL), where the reciprocal of the equivalent impedance equates to the sum of the reciprocals of individual impedances—similar to resistors in parallel. It follows that the equivalent admittance is the sum of the individual admittances.

In this parallel arrangement, the source current divides inversely based on the impedances of the individual bulbs, exemplifying the current division principle. Notably, each bulb establishes an independent pathway to the power source, enabling isolated and uninterrupted current flow.

Equation2

Equation3

Furthermore, in more complex circuits with both series and parallel impedances, the delta-to-wye and wye-to-delta transformations can also be employed for impedance circuits, offering valuable circuit analysis and design tools. These transformations facilitate the conversion between different impedance configurations, enhancing the versatility of impedance-based circuits.

Теги

ImpedanceChristmas LightsSeries ConfigurationKirchhoff s Voltage LawTotal ImpedanceVoltage Division PrincipleParallel ConfigurationConstant VoltageKirchhoff s Current LawEquivalent ImpedanceCurrent Division PrincipleDelta to wye TransformationWye to delta TransformationCircuit Analysis

Из главы 6:

article

Now Playing

6.8 : Impedance Combination

AC Circuit Analysis

394 Просмотры

article

6.1 : Sinusoidal Sources

AC Circuit Analysis

474 Просмотры

article

6.2 : Graphical and Analytic Representation of Sinusoids

AC Circuit Analysis

372 Просмотры

article

6.3 : Phasors

AC Circuit Analysis

489 Просмотры

article

6.4 : Phasor Arithmetics

AC Circuit Analysis

243 Просмотры

article

6.5 : Phasor Relationships for Circuit Elements

AC Circuit Analysis

495 Просмотры

article

6.6 : Kirchoff's Laws using Phasors

AC Circuit Analysis

389 Просмотры

article

6.7 : Impedances and Admittance

AC Circuit Analysis

636 Просмотры

article

6.9 : Node Analysis for AC Circuits

AC Circuit Analysis

288 Просмотры

article

6.10 : Mesh Analysis for AC Circuits

AC Circuit Analysis

339 Просмотры

article

6.11 : Source Transformation for AC Circuits

AC Circuit Analysis

528 Просмотры

article

6.12 : Thévenin Equivalent Circuits

AC Circuit Analysis

251 Просмотры

article

6.13 : Norton Equivalent Circuits

AC Circuit Analysis

342 Просмотры

article

6.14 : Superposition Theorem for AC Circuits

AC Circuit Analysis

618 Просмотры

article

6.15 : Op Amp AC Circuits

AC Circuit Analysis

184 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены