JoVE Logo

Войдите в систему

8.1 : Chemical Shift: Internal References and Solvent Effects

In an NMR sample, precise measurement of the absolute absorption frequencies of nuclei is difficult. A standard internal reference compound is added, and the frequency difference between the reference signal and sample signals is measured.

The internal reference compound generally used in NMR spectroscopy is tetramethylsilane (TMS). TMS is preferred because it is chemically inert, soluble in NMR solvents, and easily removable. Also, the highly shielded methyl protons in TMS yield an intense signal at a lower frequency than most other organic molecules. Because of these advantages, TMS is used as a primary reference in proton, carbon, and silicon NMR spectroscopy. If a suitably inert reference compound is not available, the reference is kept in a capillary tube within the NMR tube and called an external reference.

In addition, deuterated NMR solvents such as CDCl3, D2O, and (CD3)2SO contain residual protons whose signal can be used as a secondary reference. Furthermore, the signal from the deuterium itself can be used to monitor the instrument's magnetic field by a technique called locking. During locking, the deuterium signal is constantly compared to a reference frequency and adjusted if there is any variation.

Теги

Chemical ShiftInternal ReferencesSolvent EffectsNMR SpectroscopyTetramethylsilane TMSReference CompoundDeuterated SolventsResidual ProtonsExternal ReferenceProton NMRCarbon NMRSilicon NMRMagnetic Field Locking

Из главы 8:

article

Now Playing

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

590 Просмотры

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Просмотры

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.5K Просмотры

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Просмотры

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Просмотры

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.3K Просмотры

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Просмотры

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Просмотры

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Просмотры

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.9K Просмотры

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

862 Просмотры

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

922 Просмотры

article

8.15 : Spin–Spin Coupling: Two-Bond Coupling (Geminal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

940 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены