Войдите в систему

When one or more data points appear far from the rest of the data, there is a need to determine whether they are outliers and whether they should be eliminated from the data set to ensure an accurate representation of the measured value. In many cases, outliers arise from gross errors (or human errors) and do not accurately reflect the underlying phenomenon. In some cases, however, these apparent outliers reflect true phenomenological differences. In these cases, we can use statistical methods to help determine whether to retain the outlier. A statistical method that can help us retain or reject outliers is called the Q-test. To perform the Q-test, we first arrange the values in a data set in order of increasing value. Then, we calculate the Q value by taking the ratio of the absolute difference between a data point and its adjacent data point. This Q value is then compared with the tabulated critical Q value at a chosen significance level and appropriate degrees of freedom. If the Q value equals or exceeds the reference Q value in the table, the data point is considered an outlier and therefore rejected from the data set. Here, it is reasonable to disregard the data point as an outlier because the magnitude of the deviation cannot be logically accounted for by random (indeterminate) errors. On the other hand, if the Q value is smaller than the reference value in the table, the data point should be retained, and the interpretation is that the difference between this data point and the rest of the data is within reasonable (statistical) expectation.

Теги

Gross ErrorOutliersQ testStatistical MethodsData PointsData SetCritical Q ValueSignificance LevelDegrees Of FreedomAbsolute DifferenceStatistical Expectation

Из главы 1:

article

Now Playing

1.16 : Detection of Gross Error: The Q Test

Chemical Applications of Statistical Analyses

4.0K Просмотры

article

1.1 : SI Units: 2019 Redefinition

Chemical Applications of Statistical Analyses

1.1K Просмотры

article

1.2 : Degrees of Freedom

Chemical Applications of Statistical Analyses

2.8K Просмотры

article

1.3 : Statistical Analysis: Overview

Chemical Applications of Statistical Analyses

4.3K Просмотры

article

1.4 : Types of Errors: Detection and Minimization

Chemical Applications of Statistical Analyses

1.1K Просмотры

article

1.5 : Systematic Error: Methodological and Sampling Errors

Chemical Applications of Statistical Analyses

1.2K Просмотры

article

1.6 : Random Error

Chemical Applications of Statistical Analyses

604 Просмотры

article

1.7 : Standard Deviation of Calculated Results

Chemical Applications of Statistical Analyses

4.0K Просмотры

article

1.8 : Introduction to z Scores

Chemical Applications of Statistical Analyses

285 Просмотры

article

1.9 : Uncertainty: Overview

Chemical Applications of Statistical Analyses

314 Просмотры

article

1.10 : Propagation of Uncertainty from Random Error

Chemical Applications of Statistical Analyses

421 Просмотры

article

1.11 : Propagation of Uncertainty from Systematic Error

Chemical Applications of Statistical Analyses

273 Просмотры

article

1.12 : Uncertainty: Confidence Intervals

Chemical Applications of Statistical Analyses

2.8K Просмотры

article

1.13 : Significance Testing: Overview

Chemical Applications of Statistical Analyses

3.2K Просмотры

article

1.14 : Identifying Statistically Significant Differences: The F-Test

Chemical Applications of Statistical Analyses

1.3K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены