Method Article
O objetivo deste protocolo é fornecer uma maneira eficiente de segmentar volumes de interesse em tomografias computadorizadas de alta resolução para uso para análises mais radiomicas.
A segmentação é uma tarefa complexa, enfrentada por radiologistas e pesquisadores à medida que a radiomicidade e o aprendizado de máquina crescem em potencialidade. O processo pode ser automático, semiautomático ou manual, o primeiro muitas vezes não sendo suficientemente preciso ou facilmente reproduzível, sendo o último excessivamente demorado quando envolve grandes distritos com aquisições de alta resolução.
Uma tomografia de alta resolução do baú é composta de centenas de imagens, e isso torna a abordagem manual excessivamente demorada. Além disso, as alterações parenchímicas requerem uma avaliação pericial a ser discernida a partir do aparecimento normal; assim, uma abordagem semiautomática para o processo de segmentação é, pelo que sabemos, a mais adequada ao segmentar pneumonias, especialmente quando suas características ainda são desconhecidas.
Para os estudos realizados em nosso instituto sobre a imagem do COVID-19, adotamos o 3D Slicer, um software de freeware produzido pela Universidade de Harvard, e combinamos o limiar com os instrumentos de pincel para alcançar a segmentação rápida e precisa de opacities aeradas, opacities de vidro moído e consolidações. Diante de casos complexos, este método ainda requer um tempo considerável para ajustes manuais adequados, mas fornece uma média extremamente eficiente para definir segmentos a serem utilizados para análise suplementar, como o cálculo do percentual do parenchyma pulmonar afetado ou análise de textura das áreas de vidro moído.
No ano atual, o mundo enfrenta uma emergência de saúde, a pandemia causada pelo novo Coronavirus, Sars-CoV2. Mesmo que, até hoje, muitos aspectos relativos à fisiopatologia da infecção pelo COVID-19 ainda não estejam claros, compartilha várias características com seus "ancestrais" SARS1 e MERS. Em particular, foi comprovado que as proteínas de pico de virion interagem com a Enzima Conversante de Angiotensina Tipo-2, um receptor bem representado nas células endoteliais alveolares, mas onipresente no organismo humano, tendo assim a potencialidade de dar sintomas sistêmicos1.
Para o diagnóstico, o padrão atual é a reação em cadeia transcriptase-polimerase reversa em tempo real (rt-PCR), um teste realizado em cotonetes faringeais. Embora a imagem radiológica não seja oficialmente reconhecida no caminho diagnóstico para a detecção da doença, a tomografia computadorizada de alta resolução (HRCT) mostrou-se um valioso auxílio ao manejo clínico e epidemiológico dos pacientes afetados, devido à sensibilidade relativamente baixa do rt-PCR, à atual escassez de laboratórios especializados e aos reagentes necessários, e à alta dependência do operador.
A Sociedade Radiológica da América do Norte (RSNA) divulgou uma declaração de consenso, endossada pela sociedade de Radiologia Torácica e pelo American College of Radiology (ACR), que classifica a aparência ct do COVID19 em quatro categorias, a fim de padronizar o relatório, dividindo os padrões intersticiais de pneumonia em "típicos", "atípicos", "indeterminados" e "negativos"2.
O padrão "típico" é caracterizado pela presença de Opacções de Vidro Moído em forma redonda (GGO), geralmente com uma localização sub-pleural nos segmentos basais dorsais. A GGO pode ser associada a áreas de "Pavimentação Louca" de septa espessa, ou outros sinais de organização de pneumonia. O padrão "indeterminado" caracteriza-se pela ausência dos achados de padrão "típicos", com áreas difusas de GGO com distribuição perihilar, com ou sem áreas consolidativas. O padrão "atípico" é caracterizado pela ausência dos sinais "típicos" ou "indeterminados", e pela presença de consolidações de lobar, "árvore no broto", espessamento suave do septo e derrame pleural; nesta apresentação nenhum GGO é detectável. O padrão "negativo" caracteriza-se pela ausência dos achados patológicos acima mencionados.
De acordo com a literatura, alguns pacientes podem apresentar alto suspeita clínico de COVID-19 amparado por critérios epidemiológicos e achados de imagem com rt-PCR negativo3,4. Por outro lado, tem sido relatado que pacientes com rt-PCR positivo e achados clínicos sugestivos, não apresentam achados patológicos no HRCT5.
Hoje em dia, é de fundamental interesse da comunidade científica aplicar técnicas de análise de imagem ao estudar quantitativamente as características dessa doença. Estudo recente aplicou técnica de segmentação automatizada do parenchyma pulmonar para identificar o percentual de pulmão aerado em pacientes acometidos pelo COVID-19, correlacionando esse valor com o prognóstico, e demonstrando que pacientes com envolvimento pulmonar mais grave apresentavam maior risco de serem internados na Unidade de Terapia Intensiva (UTI), e com piores desfechos6.
A segmentação é o contorno de regiões de interesse (ROIs) dentro de um volume adquirido através de uma técnica de imagem, como o HRCT. Esta atividade pode ser realizada através de três métodos: manual, semiautomático e automático. A segmentação manual, graças à experiência de um radiologista treinado, consiste em rotular voxels pertencentes à área patológica. As principais desvantagens deste método são a grande quantidade de tempo necessário e o fato de ser dependente do operador.
Métodos semiautomâneos permitem acelerar a segmentação, pois o operador pode modificar uma máscara de segmentação obtida através dos métodos clássicos de processamento de imagem (por exemplo, limiar na intensidade do pixel, clustering, etc.). No entanto, essas técnicas não são fáceis de implementar na prática clínica, pois requerem ampla intervenção manual nos casos mais complicados18.
Os métodos automáticos de segmentação, atualmente de uso limitado, empregam inteligência artificial para obter ROIs. Em particular, um estudo recente visa utilizar a segmentação automática na quantificação de áreas de vidro moído em pacientes que sofrem de pneumonia intersticia19 COVID-19. A definição de um protocolo de segmentação para as áreas patológicas nas imagens do HRCT é o verdadeiro primeiro passo para a análise radiomática subsequente, a fim de identificar características que possam ajudar a entender melhor a fisiopatologia da doença, e servir como um fator prognóstico preciso potencialmente influenciando o tratamento.
Este artigo oferece um guia para obter segmentos precisos e eficientes representando os achados patológicos da pneumonia COVID-19 utilizando "3D Slicer"7,8,9,10.
Este protocolo segue as diretrizes do comitê institucional de ética em pesquisa humana.
1. Baixar as imagens do DICOM
2. Importar o estudo HRCT sobre o software 3D Slicer
3. Criação dos Segmentos
4. Definição do segmento TLP
NOTA: Uma definição precisa do segmento TLP é fundamental, pois será usada para mascarar o HRCT durante a definição dos segmentos GGO e CDs.
5. Definição do segmento GGO
6. Definição do segmento de CDs
7. Salvando os segmentos
8. Extração de volumes dos segmentos definidos.
O método proposto foi refinado através de tentativas e erros, testando-o em 117 pacientes afetados por pneumonia COVID-19 com um teste de rt-PCR positivo.
Após uma pequena curva de aprendizado, o tempo necessário para obter os segmentos pode variar de 5 a 15 minutos, dependendo do padrão de apresentação.
Como mostrado na Figura 1,o método produz segmentos precisos: isso pode ser observado notando a correspondência exata com o HRCT. A renderização 3D ajuda a avaliar a correspondência e revisar rapidamente os resultados de segmentação. Uma avaliação quantitativa da quantidade de parenchyma pulmonar afetada pode ser obtida, para replicar os resultados relatados de Colombi et al.6 e Lanza et al.13.
Figura 1: Volume de resultados representativo e análise de superfície. A captura de tela da interface 3D Slicer representa os resultados obtidos do módulo "Estatísticas do Segmento", que podem ser usados para avaliar quantitativamente o volume do parenchyma pulmonar afetado. Clique aqui para ver uma versão maior desta figura.
A segmentação representa um passo fundamental para a realização de estudos modernos de radiologia quantitativa, e é necessário aplicar técnicas de radiomics ou análise de textura. Os achados patológicos nos pulmões representam um dos mais desafiadores para o segmento, pela falta de fronteiras anatômicas definidas e uma pequena diferença no valor da atenuação quando comparadas às áreas saudáveis.
As imagens de origem devem apresentar um mínimo de artefatos, se possível, especialmente nas áreas patológicas, e isso às vezes é difícil de alcançar ao estudar uma doença que compromete a respiração; portanto, os pesquisadores podem considerar a exclusão de HRCTs comprometidos ou a definição de um segmento dedicado a artefatos a serem eliminados de análises posteriores.
É possível instalar uma extensão para o 3D Slicer, chamada de "plataforma de imagem torácica"11,que permite operações mais rápidas e automatizadas em segmentos pulmonares, com especial interesse em pulmão aerado. Decidiu-se não adotar esse método, pois requer ampla intervenção manual quando a GGO e as consolidações possuem uma distribuição sub-pleural, que é o caso da patologia explorada neste artigo.
Um método de segmentação automática para doenças pulmonares intersticiais foi relatado12; mesmo assim, esse método exigia ter conhecimento prévio das características das áreas afetadas. A técnica proposta neste estudo representa uma abordagem fácil de aprender e reprodutível para a segmentação de achados patológicos do pulmão, características extraídas das quais poderiam fornecer meios futuros de segmentar automaticamente doenças pulmonares intersticiais virais, e representar fatores prognósticos precisos.
O método de segmentação proposto tem algumas limitações.
Em primeiro lugar, baixar as imagens DICOM das estações de trabalho é um processo que pode exigir uma quantidade variável de tempo, assim fazê-lo para um grande número de pacientes pode ser um trabalho problemático. Qualquer possível aplicação desse método de segmentação à prática clínica deve considerar essa questão crítica, até o momento em que os plugins de segmentação se tornam amplamente disponíveis nas plataformas PACS.
Em segundo lugar, a segmentação das áreas patológicas relacionadas ao COVID-19 pode ser complicada em pacientes com doença pulmonar crônica simultânea (por exemplo, câncer de pulmão, fibrose pulmonar, etc.) cujos achados radiológicos consistem em áreas com as mesmas densidades daqueles típicos dos padrões COVID-19. A mesma preocupação deve ser considerada em tomografias com artefatos respiratórios. Esses artefatos são bastante comuns em pacientes com infecção por COVID-19, sendo comumente relacionados à dispneia e insuficiência respiratória, especialmente em pacientes de idade/meia-idade.
Além disso, pacientes com pneumonia intersticiacional grave (caracterizada por muitas consolidações pulmonares e opacidades de pavimentação loucas) requerem uma segmentação manual mais extensa e, consequentemente, uma vasta quantidade de tempo. Em geral, quanto maior a gravidade da pneumonia intersticia, mais extensa a segmentação manual necessária, maior o tempo de segmentação.
No entanto, o grau de precisão oferecido por técnicas avançadas de avaliação, como as propostas por Lanza e Colombi, poderia adicionar informações limitadas sobre pacientes com condições pulmonares já graves em comparação com as avaliações clínicas e radiológicas padrão20.
Por fim, deve-se notar que qualquer radiologista que não tenha experiência com cortador 3D precisa de um tempo de treinamento adequado, pois não é um software intuitivo e requer algum tempo para ser dominado mesmo em suas funções basilares.
Nenhum dos autores tem conflitos de interesses.
Este trabalho foi apoiado por financiamento do Departamento de Radiologia da Universidade de Bolonha.
Name | Company | Catalog Number | Comments |
CT Scanner | General Electrics Healthcare | 64-MDCT VCT lightSpeed | The CT scanner used for HRCT acquisitions |
Desktop Computer | ThinkCentre | The computer used to download the DICOM files and run 3D Slicer |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados