Method Article
Quando os ensaios clínicos randomizados controlados não são viáveis, uma fonte abrangente de dados de cuidados de saúde, como o Repositório de Dados do Sistema De Saúde Militar, oferece uma alternativa atraente para análises retrospectivas. A incorporação de dados de mortalidade do índice nacional de óbitos e o equilíbrio das diferenças entre grupos que usam ponderação de propensão ajudam a reduzir os vieses inerentes aos projetos retrospectivos.
Quando os ensaios clínicos randomizados controlados não são viáveis, estudos retrospectivos usando big data fornecem uma alternativa eficiente e econômica, embora estejam em risco de viés de seleção de tratamento. Viés de seleção de tratamento ocorre em um estudo não randomizado quando a seleção do tratamento é baseada em características pré-tratamento que também estão associadas ao desfecho. Essas características pré-tratamento, ou confundidores, podem influenciar a avaliação do efeito de um tratamento no resultado. Os escores de propensão minimizam esse viés equilibrando os conhecidos confundidores entre os grupos de tratamento. Existem algumas abordagens para a realização de análises de escore de propensão, incluindo estratificação pelo escore de propensão, correspondência de propensão e probabilidade inversa de ponderação do tratamento (IPTW). Descrito aqui é o uso do IPTW para equilibrar comorbidades básicas em uma coorte de pacientes dentro do Repositório de Dados do Sistema Militar de Saúde dos EUA (MDR). O MDR é uma fonte de dados relativamente ideal, pois fornece uma coorte contida na qual informações quase completas sobre serviços de internação e ambulatório estão disponíveis para beneficiários elegíveis. Descrito abaixo está o uso do MDR complementado com informações do índice nacional de óbitos para fornecer dados de mortalidade robustos. Também são fornecidas sugestões para o uso de dados administrativos. Finalmente, o protocolo compartilha um código SAS para o uso do IPTW para equilibrar os fundadores conhecidos e traçar a função de incidência cumulativa para o resultado do interesse.
Ensaios randomizados controlados por placebo são o projeto de estudo mais forte para quantificar a eficácia do tratamento, mas nem sempre são viáveis devido a requisitos de custo e tempo ou falta de equipoise entre os grupos de tratamento1. Nesses casos, um projeto retrospectivo de coorte usando dados administrativos em larga escala ("big data") muitas vezes fornece uma alternativa eficiente e econômica, embora a falta de randomização introduz viés de seleção de tratamento2. Viés de seleção de tratamento ocorre em estudos não randomizados quando a decisão do tratamento depende de características pré-tratamento que estão associadas ao resultado de interesse. Essas características são conhecidas como fatores de confusão.
Como os escores de propensão minimizam esse viés equilibrando os conhecidos confundidores entre grupos de tratamento, eles se tornaram cada vez mais populares3. Os escores de propensão têm sido usados para comparar abordagens cirúrgicas4 e regimes médicos5. Recentemente, usamos uma análise de propensão de dados do Repositório de Dados do Sistema De Saúde Militar dos Estados Unidos (MDR) para avaliar o efeito das estatinas na prevenção primária de desfechos cardiovasculares com base na presença e gravidade do cálcio da artéria coronária6.
O MDR, utilizado com menos frequência do que os conjuntos de dados medicare e va para fins de pesquisa, contém informações abrangentes de reclamações administrativas e médicas de serviços de internação e ambulatoriais fornecidos para militares de serviço ativo, aposentados e outros beneficiários de saúde do Departamento de Defesa (DoD) e seus dependentes. O banco de dados inclui serviços prestados em todo o mundo em instalações de tratamento militar dos EUA ou em instalações civis faturadas ao DoD. O banco de dados inclui dados completos da farmácia desde 1º de outubro de 2001. Os dados laboratoriais estão disponíveis a partir de 2009, mas limitam-se apenas a instalações de tratamento militar. Dentro do MDR, as coortes foram definidas com métodos que incluem o uso de códigos de diagnóstico (por exemplo, diabetes mellitus7)ou códigos de procedimento (por exemplo, cirurgia artroscópica8). Alternativamente, uma coorte de beneficiários elegíveis definidos externamente, como um registro, pode ser combinada com o MDR para obter dados de linha de base e acompanhamento9. Ao contrário do Medicare, o MDR inclui pacientes de todas as idades. Também é menos tendencioso em relação aos homens do que o banco de dados va, uma vez que inclui dependentes. O acesso ao MDR é limitado, no entanto. Geralmente, apenas os investigadores que são membros do Sistema Militar de Saúde podem solicitar acesso, análogo aos requisitos para uso do banco de dados va. Pesquisadores não governamentais que buscam acesso aos dados dos Sistemas De Saúde Militar devem fazê-lo por meio de um acordo de compartilhamento de dados a supervisão de um patrocinador do governo.
Ao usar qualquer conjunto de dados administrativos, é importante ter em mente as limitações, bem como os pontos fortes da codificação administrativa. A sensibilidade e especificidade do código podem variar com base no diagnóstico relacionado, seja um diagnóstico primário ou secundário ou se é um arquivo de internação ou ambulatorial. Os códigos de internação para infarto agudo do miocárdio são geralmente relatados com precisão com valores preditivos positivos acima de 90%10,mas o uso de tabaco é muitas vezes subestimado11. Essa subcodificação pode ou não ter um efeito significativo sobre os resultados de um estudo12. Além disso, vários códigos para uma determinada condição podem existir com diferentes níveis de correlação com a doença na questão13. Uma equipe de investigação deve realizar uma pesquisa e revisão abrangente da literatura da Classificação Internacional de Doenças, Nona Revisão, Modificação Clínica (ICD-9-CM) e/ou manuais de codificação ICD-10-CM para garantir que os códigos apropriados sejam incluídos no estudo.
Vários métodos podem ser utilizados para melhorar a sensibilidade e precisão dos códigos de diagnóstico para definir as condições de comórbida. Um período apropriado de "olhar para trás" deve ser incluído para estabelecer comorbidades de base. O período de retorno inclui os serviços de internação e ambulatórios prestados antes da entrada do estudo. Um período de um ano pode ser ideal14. Além disso, exigir duas reivindicações separadas em vez de uma única reivindicação pode aumentar a especificidade, enquanto a suplementação de dados de codificação com dados farmacêuticos pode melhorar a sensibilidade15. Selecione auditorias de gráficos manuais em uma parte dos dados podem ser usados para verificar a precisão da estratégia de codificação.
Uma vez que as comorbidades tenham sido definidas e avaliadas para a coorte em questão, um escore de propensão pode ser usado para equilibrar diferenças nas covariates entre os grupos de tratamento. O escore de propensão é derivado da probabilidade de que um paciente seja atribuído a um tratamento baseado em covariadas conhecidas. A contabilização desse tratamento de propensão reduz o efeito que as covariates têm na atribuição do tratamento e ajuda a gerar uma estimativa mais verdadeira do efeito do tratamento no resultado. Embora os escores de propensão não forneçam necessariamente resultados superiores aos modelos multivariados, eles permitem a avaliação de se os grupos tratados e não tratados são comparáveis após a aplicação da pontuação de propensão3. Os investigadores do estudo podem analisar as diferenças padronizadas absolutas em covariates antes e depois da propensão correspondente ou probabilidade inversa de ponderação do tratamento (IPTW) para garantir que os fundadores conhecidos tenham sido equilibrados entre os grupos. Importante, os confundidores desconhecidos não podem ser equilibrados, e um deve estar ciente do potencial para a confusão residual.
Quando executado corretamente, porém, as pontuações de propensão são uma ferramenta poderosa que pode prever e replicar resultados de ensaios clínicos randomizados controlados16. Das técnicas disponíveis de pontuação de propensão, correspondência e IPTW são geralmentepreferidos 17. Dentro do IPTW, os pacientes são ponderados por sua propensão ou probabilidade de tratamento. Os pesos de estabilização são recomendados geralmente sobre pesos crus, quando o aparamento dos pesos puder igualmente ser considerado18,19,20,21.
Uma vez que os grupos de estudo são equilibrados, eles podem ser seguidos até o resultado de interesse. Estudos utilizando dados administrativos podem estar interessados em resultados como taxas de readmissão e análises de tempo para evento. Em estudos interessados em mortalidade, o Repositório de Dados do Sistema Militar de Saúde inclui um campo de status vital que pode ser aumentado ainda mais usando o índice nacional de óbitos (NDI)22,23. O NDI é um banco de dados centralizado de informações de registro de óbitos de escritórios estaduais que é gerenciado pelo Centro de Controle de Doenças. Os investigadores podem solicitar status vital básico e/ou causa específica de morte com base na certidão de óbito.
O protocolo a seguir detalha o processo de realização de um estudo administrativo de banco de dados usando o MDR aumentado com informações de mortalidade do NDI. Ele detalha o uso do IPTW para equilibrar as diferenças de base entre dois grupos de tratamento, incluindo código SAS e saída de exemplo.
O seguinte protocolo segue as diretrizes de nossos comitês institucionais de ética humana.
1. Definindo a coorte
2. Definição de covariates e resultados
3. Apresentar um pedido para o MDR
4. Acesso ao MDR e extração de dados relevantes
5. Fusão de dados e construção de arquivos sumativos
6. Jogo ao índice nacional da morte (NDI)
7. Dados de desidentificação
8. Computando a pontuação de propensão18,19,26
9. Criar o modelo de desfecho e gerar um lote de função de incidência cumulativa
Após a conclusão do IPTW, tabelas ou parcelas das diferenças padronizadas absolutas podem ser geradas usando o código macro stddiff ou o código macro asdplot, respectivamente. A Figura 1 mostra um exemplo de equilíbrio adequado em uma grande coorte de 10.000 participantes usando a macro asdplot. Após a aplicação do escore de propensão, as diferenças padronizadas absolutas foram reduzidas significativamente. O ponto de corte usado para a diferença padronizada absoluta é um pouco arbitrário, embora 0,1 seja frequentemente usado e denote diferença insignificante entre os dois grupos. Em uma pequena coorte, o equilíbrio adequado é mais difícil de alcançar. A Figura 2 mostra os resultados mal sucedidos da tentativa de equilibrar covariáveis em uma coorte de 100 participantes.
Uma vez gerada a pontuação de propensão padronizada, a equipe do estudo pode prosseguir com a análise de resultados. A análise de sobrevivência é frequentemente empregada devido à necessidade de censurar os participantes com informações de acompanhamento irregulares, e a Figura 3 retrata um exemplo do uso de proc phreg com pesos padronizados de pontuação de propensão para gerar uma trama de função de incidência cumulativa (CIF). O enredo cif retrata o número crescente de eventos ao longo do tempo. Neste caso, o grupo não tratado, ou controle, (No Rx) tem um número maior de eventos e é comparativamente pior do que o grupo tratado (Rx).
Figura 1: Exemplo de equilíbrio bem-sucedido. Em uma grande coorte (n = 10.000), a IPTW alcançou o equilíbrio das covariates com todas as diferenças padronizadas absolutas reduzindo para menos de 0,1. Clique aqui para ver uma versão maior deste número.
Figura 2: Exemplo de equilíbrio mal sucedido. Em uma pequena coorte (n = 100), o IPTW foi incapaz de alcançar o equilíbrio das covariáveis, com muitas diferenças padronizadas absolutas permanecendo superiores a 0,1. Clique aqui para ver uma versão maior deste número.
Figura 3: Exemplo de trama de função de incidência cumulativa comparando grupos de tratamento. Ao longo do tempo, a incidência cumulativa de mortalidade aumenta em ambos os grupos, embora seja maior no grupo não tratado (No Rx). Assim, neste exemplo, o grupo tratado melhorou a sobrevivência. Clique aqui para ver uma versão maior deste número.
Materiais suplementares. Clique aqui para ver este arquivo (Clique certo para baixar).
Análises retrospectivas usando grandes conjuntos de dados administrativos fornecem uma alternativa eficiente e econômica quando ensaios clínicos randomizados controlados não são viáveis. O conjunto de dados apropriado dependerá da população e das variáveis de interesse, mas o MDR é uma opção atraente que não tem as restrições de idade vistas com dados do Medicare. Com qualquer conjunto de dados, é importante estar intimamente familiarizado com seu layout e dicionário de dados. Os cuidados devem ser tomados ao longo do caminho para garantir que os dados completos sejam capturados e os dados sejam combinados e fundidos com precisão.
Os códigos para diagnósticos devem ser definidos usando a literatura existente e uma compreensão completa do sistema de codificação ICD-9-CM e ICD-10-CM para maximizar o valor dos diagnósticos atribuídos. Os conjuntos existentes de códigos de comorbidade, incluindo o Elixhauser27 ou o refinado índice de comorbidade charlson28,29,podem ser usados para definir condições comórbidas que podem influenciar o resultado do interesse. Da mesma forma, algoritmos de codificação validados em dados administrativos e devem ser aproveitados. A validação deve continuar a ser uma área de pesquisa ativa, pois há aprendizado contínuo sobre o uso ideal de algoritmos de codificação ICD-9-CM e ICD-10-CM para maximizar a classificação precisa de uma ampla gama de doenças.
Os escores de propensão podem ser usados para abordar o viés inerente a qualquer análise retrospectiva. A ponderação ou correspondência de pontuação de propensão eficaz devem reduzir a diferença de padronização absoluta (TEA) abaixo do limite desejado, geralmente fixado em 0,1. O equilíbrio adequado ajuda a garantir a comparabilidade dos grupos de tratamento no que diz respeito aos confundidores conhecidos, e técnicas de pontuação de propensão devidamente empregadas têm sido usadas para replicar com sucesso os resultados de ensaios randomizados. Uma vez devidamente equilibrados, os grupos de tratamento podem ser comparados com o tempo univariada ou outra análise.
Mesmo com o equilíbrio adequado, há potencial para confusão residual 3 , de modoquea equipe de investigação deve limitar o efeito de confundidores não medidos. Além disso, se os efeitos das covariates na seleção de tratamento forem fortes, o viés ainda pode permanecerem 30. Em pequenas coortes, é improvável que os escores de propensão reduzam totalmente o TEA abaixo de 0,1 para todas as variáveis e o ajuste de regressão pode ser empregado para ajudar a remover o desequilíbrio residual31. O ajuste de regressão também pode ser usado na análise do subgrupo quando o equilíbrio adequado não está mais assegurado.
Quando feito corretamente, a pesquisa com dados administrativos fornece respostas oportunas a questões clínicas importantes na ausência de ensaios clínicos randomizados. Embora seja impossível remover todos os preconceitos dos estudos observacionais, o viés pode ser limitado usando escores de propensão e análises meticulosas remanescentes.
Os autores não têm nada a divulgar.
A pesquisa relatada nesta publicação foi apoiada pelo Centro Nacional de Ciências Translacionais Avançadas dos Institutos Nacionais de Saúde o Prêmio Número UL1 TR002345. O conteúdo é de responsabilidade exclusiva dos autores e não representa necessariamente as opiniões oficiais dos Institutos Nacionais de Saúde.
Aviso: Além disso, as opiniões expressas neste artigo são as do autor apenas e não devem ser interpretadas para representar de forma alguma as do Governo dos Estados Unidos, do Departamento de Defesa dos Estados Unidos (DoD) ou do Departamento de Estados Unidos Exército. A identificação de produtos específicos ou instrumentação científica é considerada parte integrante do esforço científico e não constitui endosso ou endosso implícito por parte do autor, DoD, ou qualquer agência componente.
Name | Company | Catalog Number | Comments |
CD Burner (for NDI Request) | |||
Computer | |||
Putty.exe | Putty.org | ||
SAS 9.4 | SAS Institute Cary, NC | ||
WinSCP or other FTP software | https://winscp.net/eng/index.php |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados