JoVE Logo

Entrar

This lesson delves into the conversion of alcohols to corresponding alkyl halides and the mechanism of action for different reagents. Typically, the hydroxyl group is first protonated to convert it to a stable leaving group. Consequently, based on the starting alcohol, the mechanism undergoes either of the nucleophilic substitution routes, SN1 or SN2. Tertiary alkyl halides are made using the two-step SN1 mechanism that occurs via a carbocation intermediate, which is stabilized by hyperconjugation. However, for primary alcohols, the protonation of the hydroxyl group leads to the concerted SN2 route. Secondary alcohols can proceed via either mechanism based on the reaction conditions.

The popular reagents used for converting alcohols to corresponding alkyl halides include the hydrogen halides like hydrogen bromide and hydrogen chloride. However, while it is straightforward with the former, the latter needs an additional catalyst like zinc chloride. This catalyzes the hydroxyl group into a better leaving group enabling the subsequent SN2 process. Other reagents of choice are thionyl chloride and phosphorus tribromide with a similar mechanism. In the presence of relatively weak bases like pyridine/tertiary amine, they generate an excellent leaving group compared to the original leaving group of water.

The most exciting class of reagents is sulfonyls. They react with the alcohols to form corresponding mesylates, tosylates, or triflates to improve their reactivity in an SN2 reaction. In these species, resonance stabilization is inherent to the sulfonyl group. Additional resonance stabilization is contributed by the benzene ring of the tosyl group, and further stability is provided by the strongly electron-withdrawing trifluoromethyl in the triflate.

Stereochemistry

Most importantly, the choice of reagent influences the stereochemistry of the product formed. The use of thionyl chloride leads to an inversion of configuration, while tosyl chlorides retain the chiral configuration in the native alcohol.

Tags

ConversionAlcoholsAlkyl HalidesMechanismReagentsHydroxyl GroupProtonatedLeaving GroupNucleophilic SubstitutionSN1SN2Tertiary Alkyl HalidesCarbocation IntermediateHyperconjugationPrimary AlcoholsConcerted SN2 RouteSecondary AlcoholsReaction ConditionsHydrogen HalidesHydrogen BromideHydrogen ChlorideZinc Chloride CatalystThionyl ChloridePhosphorus TribromidePyridine tertiary Amine BasesSulfonylsMesylatesTosylatesTriflates

Do Capítulo 10:

article

Now Playing

10.10 : Conversão de Álcoois em Halogenetos de Alquila

Álcoois e Fenóis

7.0K Visualizações

article

10.1 : Estrutura e Nomenclatura de Álcoois e Fenóis

Álcoois e Fenóis

15.9K Visualizações

article

10.2 : Propriedades Físicas de Álcoois e Fenóis

Álcoois e Fenóis

13.8K Visualizações

article

10.3 : Acidez e Basicidade de Álcoois e Fenóis

Álcoois e Fenóis

18.4K Visualizações

article

10.4 : Preparação de Álcoois por meio de Reações de Adição

Álcoois e Fenóis

6.1K Visualizações

article

10.5 : Desidratação Catalisada por Ácido de Álcoois a alquenos

Álcoois e Fenóis

18.9K Visualizações

article

10.6 : Álcoois de Compostos Carbonílicos: Redução

Álcoois e Fenóis

10.1K Visualizações

article

10.7 : Álcoois de Compostos Carbonílicos: Reação de Grignard

Álcoois e Fenóis

5.1K Visualizações

article

10.8 : Proteção de Álcoois

Álcoois e Fenóis

7.1K Visualizações

article

10.9 : Preparação de Dióis e Rearranjo de Pinacol

Álcoois e Fenóis

3.2K Visualizações

article

10.11 : Oxidação de Álcoois

Álcoois e Fenóis

12.6K Visualizações

article

10.12 : Preparação de Álcoois via Reações de Substituição

Álcoois e Fenóis

5.7K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados