Zaloguj się

The divergence of a vector field at a point is the net outward flow of the flux out of a small volume through a closed surface enclosing the volume, as the volume tends to zero. More practically, divergence measures how much a vector field spreads out or diverges from a given point. For an outgoing flux, conventionally, the divergence is positive. The diverging point is often called the "source" of the field. Meanwhile, the negative divergence of a vector field at a point means that the vector field is "contracting" or "converging" towards that point. This implies that the vector field is flowing inwards towards the point more than it is flowing outwards. This point is often called the "sink" of the field.

The divergence is zero if the inward flux at a point equals the outward flux. Mathematically, divergence is the dot product of the del operator with the vector field and is expressed as

Equation1

The curl of a vector field is the circulation of the vector per unit area as this area tends to zero, and is in the direction normal to the area where the circulation is maximum. The curl of a vector field indicates the local rotation or circulation of the vector field calculated at any arbitrary point. A zero curl indicates no rotation, while a non-zero curl indicates rotation of the vector field. Mathematically, curl is the cross product of the del operator with the vector field and is expressed as

Equation2

Curl is an important concept in many areas of physics, including electromagnetism and fluid dynamics. In electromagnetism, the curl of electric and magnetic fields determines the behavior of electromagnetic waves. Meanwhile, in fluid dynamics, the curl of the velocity field determines the degree to which a fluid "circulates" or "rotates" at a given point.

A curl indicates direction of a non-uniform flow, whereas divergence of the field only shows the scalar distribution of its sources.

Tagi

DivergenceCurlVector FieldFluxSourceSinkDel OperatorCirculationRotationElectromagnetismFluid DynamicsScalar DistributionNon uniform Flow

Z rozdziału 2:

article

Now Playing

2.12 : Divergence and Curl

Vectors and Scalars

1.6K Wyświetleń

article

2.1 : Wprowadzenie do skalarów

Vectors and Scalars

13.8K Wyświetleń

article

2.2 : Wprowadzenie do wektorów

Vectors and Scalars

13.5K Wyświetleń

article

2.3 : Składowe wektorowe w kartezjańskim układzie współrzędnych

Vectors and Scalars

18.2K Wyświetleń

article

2.4 : Współrzędne biegunowe i cylindryczne

Vectors and Scalars

14.1K Wyświetleń

article

2.5 : Współrzędne sferyczne

Vectors and Scalars

9.7K Wyświetleń

article

2.6 : Algebra wektorowa: metoda graficzna

Vectors and Scalars

11.4K Wyświetleń

article

2.7 : Algebra wektorowa: metoda składników

Vectors and Scalars

13.3K Wyświetleń

article

2.8 : Iloczyn skalarny (iloczyn skalarny)

Vectors and Scalars

8.0K Wyświetleń

article

2.9 : Iloczyn wektorowy (iloczyn wektorowy)

Vectors and Scalars

9.2K Wyświetleń

article

2.10 : Potrójne iloczyny skalarne i wektorowe

Vectors and Scalars

2.2K Wyświetleń

article

2.11 : Operator gradientu i del

Vectors and Scalars

2.4K Wyświetleń

article

2.13 : Drugie instrumenty pochodne i operator Laplace'a

Vectors and Scalars

1.1K Wyświetleń

article

2.14 : Całki liniowe, powierzchniowe i objętościowe

Vectors and Scalars

2.1K Wyświetleń

article

2.15 : Rozbieżność i twierdzenia Stokesa

Vectors and Scalars

1.4K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone