Zaloguj się

James Clerk Maxwell (1831–1879) was one of the significant contributors to physics in the nineteenth century. He is probably best known for having combined existing knowledge of the laws of electricity and the laws of magnetism with his insights to form a complete overarching electromagnetic theory, represented by Maxwell's equations. The four basic laws of electricity and magnetism were discovered experimentally through the work of physicists such as Oersted, Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these earlier results and identified the incompleteness of Ampère's law as their cause. Maxwell's equations and the Lorentz force law encompass all the laws of electricity and magnetism.

The integral forms of Maxwell's equations contain all the information about the interdependence of the field and source quantities over a given region in space. However, these equations do not permit one to study the interaction between the field vectors and their relationships with the source densities at individual points. Maxwell's equations in differential form can be derived by applying Maxwell's equations in the integral form to infinitesimal closed paths, surfaces, and volumes, such that the limit shrinks to points. The differential equations relate the spatial variations of the electric and magnetic field vectors at a given point to their temporal variations.

Furthermore, the differential form of Maxwell's equations also correlates the spatial variations of both fields to the charge and current densities at a given point. Grouping the terms of electric and magnetic fields on one side and the sources producing these fields on the other suggests that charges and currents produce all electromagnetic fields. Maxwell's equations show that charges produce electromagnetic fields, and the force laws state that fields affect the charges.

Tagi

Maxwell s EquationsDifferential FormElectromagnetic TheoryElectricityMagnetismLorentz Force LawField VectorsSource DensitiesCharge DensitiesCurrent DensitiesSpatial VariationsTemporal VariationsPhysicistsOerstedCoulombGaussFaraday

Z rozdziału 30:

article

Now Playing

30.15 : Differential Form of Maxwell's Equations

Electromagnetic Induction

356 Wyświetleń

article

30.1 : Indukcja

Electromagnetic Induction

3.8K Wyświetleń

article

30.2 : Prawo Faradaya

Electromagnetic Induction

3.8K Wyświetleń

article

30.3 : Prawo Lenza

Electromagnetic Induction

3.5K Wyświetleń

article

30.4 : Ruchomy Emf

Electromagnetic Induction

3.1K Wyświetleń

article

30.5 : Faraday Disk Dynamo

Electromagnetic Induction

2.0K Wyświetleń

article

30.6 : Indukowane pola elektryczne

Electromagnetic Induction

3.5K Wyświetleń

article

30.7 : Indukowane pola elektryczne: zastosowania

Electromagnetic Induction

1.5K Wyświetleń

article

30.8 : Prądy wirowe

Electromagnetic Induction

1.5K Wyświetleń

article

30.9 : Prąd przemieszczenia

Electromagnetic Induction

2.7K Wyświetleń

article

30.10 : Znaczenie prądu przemieszczenia

Electromagnetic Induction

4.2K Wyświetleń

article

30.11 : Pola elektromagnetyczne

Electromagnetic Induction

2.1K Wyświetleń

article

30.12 : Równanie elektromagnetyzmu Maxwella

Electromagnetic Induction

2.9K Wyświetleń

article

30.13 : Symetria w równaniach Maxwella

Electromagnetic Induction

3.2K Wyświetleń

article

30.14 : Prawo Ampera-Maxwella: rozwiązywanie problemów

Electromagnetic Induction

458 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone