Zaloguj się

The ideal gas law is an approximation that works well at high temperatures and low pressures. The van der Waals equation of state (named after the Dutch physicist Johannes van der Waals, 1837−1923) improves it by considering two factors.

First, the attractive forces between molecules, which are stronger at higher densities and reduce the pressure, are considered by adding to the pressure a term equal to the square of the molar density multiplied by a positive coefficient a. Second, the volume of the molecules is represented by a positive constant b, which can be thought of as the volume of a mole of molecules. This is subtracted from the total volume to give the remaining volume that the molecules can move in. The constants a and b are determined experimentally for each gas. The resulting equation is

Equation1

For carbon dioxide gas with the van der Waals equation, constant a is 0.364 J·m3/mol2 and constant b is 4.27 x 10−5 m3/mol. If 1 mole of this gas is confined in a volume of 300 cm3 at 300 K, then the pressure of the gas can be calculated using the van der Waals equation. Rearranging the van der Waals equation for pressure,

Equation2

and substituting the known quantities in it,

Equation3

gives the pressure of carbon dioxide gas

Equation4

In the low-density limit (small n), the a and b terms are negligible, and the van der Waals equation reduces to the ideal gas law. On the other hand, if the second term from the van der Waals equation is small, meaning that the molecules are very close together, then the pressure must be higher to give the same nRT, as expected in the situation of a highly compressed gas. However, the increase in pressure is less than that argument would suggest because, at high densities, the pressure correction term from the van der Waals equation is significant. Since the pressure correction term is positive, it requires a lower pressure to give the same nRT. The van der Waals equation of state works well for most gases under various conditions, such as for predicting liquid-gas phase transitions.

Tagi

Van Der Waals EquationIdeal Gas LawAttractive ForcesMolar DensityPressure CorrectionConstants A And BCarbon Dioxide GasVolumeHigh DensitiesLiquid gas Phase TransitionsExperimental DeterminationGas Behavior

Z rozdziału 19:

article

Now Playing

19.3 : Van der Waals Equation

The Kinetic Theory of Gases

3.5K Wyświetleń

article

19.1 : Równanie stanu

The Kinetic Theory of Gases

1.6K Wyświetleń

article

19.2 : Równanie gazu doskonałego

The Kinetic Theory of Gases

5.9K Wyświetleń

article

19.4 : Wykresy pV

The Kinetic Theory of Gases

3.8K Wyświetleń

article

19.5 : Teoria kinetyczna gazu doskonałego

The Kinetic Theory of Gases

3.1K Wyświetleń

article

19.6 : Molekularna energia kinetyczna

The Kinetic Theory of Gases

4.3K Wyświetleń

article

19.7 : Rozkład prędkości molekularnych

The Kinetic Theory of Gases

3.4K Wyświetleń

article

19.8 : Rozkład Maxwella-Boltzmanna: rozwiązywanie problemów

The Kinetic Theory of Gases

1.3K Wyświetleń

article

19.9 : Diagram fazowy

The Kinetic Theory of Gases

5.6K Wyświetleń

article

19.10 : Średnia swobodna ścieżka i średni czas wolny

The Kinetic Theory of Gases

2.9K Wyświetleń

article

19.11 : Pojemność cieplna: rozwiązywanie problemów

The Kinetic Theory of Gases

441 Wyświetleń

article

19.12 : Prawo ciśnienia cząstkowego Daltona

The Kinetic Theory of Gases

1.2K Wyświetleń

article

19.13 : Prędkości ucieczki gazów

The Kinetic Theory of Gases

835 Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone