JoVE Logo

Zaloguj się

16.14 : Qualitative Analysis

For solutions containing mixtures of different cations, the identity of each cation can be determined by qualitative analysis. This technique involves a series of selective precipitations with different chemical reagents, each reaction producing a characteristic precipitate for a specific group of cations. Metal ions within a group are further separated by varying the pH, heating the mixture to redissolve a precipitate, or adding other reagents to form complex ions.

For instance, group IV cations, which consist of insoluble carbonates and phosphatases such as Ba2+, Ca2+, and Mg2+, all form white precipitates in the presence of diammonium hydrogen phosphate ((NH4)2HPO4) in a basic solution. The precipitates are dissolved in dilute acetic acid. To identify each cation, a confirmatory test is performed.

All three cations form bright yellow chromate salts upon the addition of potassium chromate (K2CrO4); however, only barium chromate (BaCrO4) is insoluble in acetic acid. The solution can be filtered, and the filtrate contains Ca2+ and Mg2+.

The filtrate can now be divided into two parts to test for the remaining cations. If the solution forms a white precipitate in the presence of ammonium oxalate ((NH4)2C2O4) solution, Ca2+ ions can be confirmed. The white precipitate is that of calcium oxalate, which is insoluble in both water and acetic acid.

Mg2+ is identified by a charcoal cavity test. In this test, metallic carbonates are decomposed into the corresponding metal oxide in a charcoal cavity. The color of the residue indicates the possible cation. Magnesium oxide (MgO) leaves a white residue in the charcoal cavity. This residue is treated with a few drops of Cobalt nitrate (Co(NO3)2) solution. With heat, cobalt nitrate decomposes into cobalt (II) oxide, which forms a pink amalgam (CoO-MgO), confirming the presence of Mg2+.

Tagi

Qualitative AnalysisMetal IonsCationsPrecipitating ReagentInsoluble SaltsAqueous SolutionsGroup 1 CationsChloride SaltsHydrochloric AcidPrecipitateCentrifugationFiltrationSupernatantHydrogen Sulfide GasMetal SulfideProtonsAcidic ConditionsGroup 2 Metal Ions

Z rozdziału 16:

article

Now Playing

16.14 : Qualitative Analysis

Acid-base and Solubility Equilibria

19.9K Wyświetleń

article

16.1 : Wspólny efekt jonowy

Acid-base and Solubility Equilibria

40.8K Wyświetleń

article

16.2 : Buffers

Acid-base and Solubility Equilibria

163.1K Wyświetleń

article

16.3 : Równanie Hendersona-Hasselbalcha

Acid-base and Solubility Equilibria

67.8K Wyświetleń

article

16.4 : Obliczanie zmian pH w roztworze buforowym

Acid-base and Solubility Equilibria

52.4K Wyświetleń

article

16.5 : Skuteczność bufora

Acid-base and Solubility Equilibria

48.3K Wyświetleń

article

16.6 : Obliczenia miareczkowania: mocny kwas - mocna zasada

Acid-base and Solubility Equilibria

28.8K Wyświetleń

article

16.7 : Obliczenia miareczkowania: słaby kwas - mocna zasada

Acid-base and Solubility Equilibria

43.6K Wyświetleń

article

16.8 : Wskaźniki

Acid-base and Solubility Equilibria

47.6K Wyświetleń

article

16.9 : Miareczkowanie kwasu poliprotonowego

Acid-base and Solubility Equilibria

95.5K Wyświetleń

article

16.10 : Równowaga rozpuszczalności

Acid-base and Solubility Equilibria

51.7K Wyświetleń

article

16.11 : Czynniki wpływające na rozpuszczalność

Acid-base and Solubility Equilibria

32.9K Wyświetleń

article

16.12 : Powstawanie jonów złożonych

Acid-base and Solubility Equilibria

23.0K Wyświetleń

article

16.13 : Wytrącanie jonów

Acid-base and Solubility Equilibria

27.4K Wyświetleń

article

16.15 : Krzywe miareczkowania kwasowo-zasadowego

Acid-base and Solubility Equilibria

125.9K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone