JoVE Logo

로그인

Radical reactions can occur either intermolecularly or intramolecularly. In an intermolecular radical reaction, a nucleophilic radical adds to an electrophilic alkene or vice versa. In such reactions, the radical and generally thealkene, which is also called the radical trap, are two different molecules. Additionally, for such intermolecular reactions to occur, the radical trap must be active, present in an excess concentration, and the radical starting material must have aweak carbon–halogen bond.

In contrast, an intramolecular radical reaction involves a radical and a radical trap, which are parts of the same molecule. In such reactions, the radical trap is not activated and is also not present in excess. Moreover, the bonds in the radical starting material are relatively strong. But, still, intramolecular cyclization is enormously favored, with the product being formed in high yields. This is because the radical and the radical trap are part of the same molecule, due to which both are held close to each other. As a result, cyclization occurs rapidly. This rapid cyclization rules out the possibility of radical reduction by a hydride donor.

Lastly, intramolecular reactions are very powerful and efficient. These reactions are often used for synthesizing five‐membered rings over all other ring sizes.

Tags

Radical ReactionsIntermolecularIntramolecularNucleophilic RadicalElectrophilic AlkeneRadical TrapCyclizationCarbon halogen BondRadical Starting MaterialHigh YieldsFive membered RingsSynthesis

장에서 20:

article

Now Playing

20.13 : Radical Reactivity: Intramolecular vs Intermolecular

Radical Chemistry

1.7K Views

article

20.1 : 급진적 인 : 전자 구조 및 기하학

Radical Chemistry

3.8K Views

article

20.2 : 전자 상자성 공명(EPR) 분광법: 유기 라디칼

Radical Chemistry

2.4K Views

article

20.3 : 급진적 형성: 개요

Radical Chemistry

2.0K Views

article

20.4 : 라디칼 형성 : 상동 분해

Radical Chemistry

3.5K Views

article

20.5 : 급진적 형성 : 추상화

Radical Chemistry

3.3K Views

article

20.6 : 급진적 형성: 덧셈

Radical Chemistry

1.6K Views

article

20.7 : 급진적 형성: 제거

Radical Chemistry

1.6K Views

article

20.8 : Radical Reactivity: 개요

Radical Chemistry

2.0K Views

article

20.9 : 급진적 반응성: 입체 효과

Radical Chemistry

1.9K Views

article

20.10 : 라디칼 반응성: 집중 효과

Radical Chemistry

1.5K Views

article

20.11 : 라디칼 반응성: 친전자성 라디칼

Radical Chemistry

1.8K Views

article

20.12 : 라디칼 반응성: 친핵성 라디칼

Radical Chemistry

2.0K Views

article

20.14 : 급진적 자율산화

Radical Chemistry

2.1K Views

article

20.15 : Allylic 및 Benzylic Alcohols의 라디칼 산화

Radical Chemistry

1.9K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유