サインイン

腹部大動脈瘤の定量的ひずみマッピング

概要

ソース:ハンナ・L・セブル1, アービン・H・ソエプリアトナ1, ジョン・J・ボイル2 ,クレイグ・J・ゲルゲン1

1インディアナ州パデュー大学、ウェストラファイエット大学ウェルドンバイオメディカルエンジニアリングスクール

2ワシントン大学セントルイス校機械工学・材料科学(ミズーリ州セントルイス)

血管、皮膚、腱、その他の器官などの軟部組織の機械的挙動は、エラスチンとコラーゲンの組成の影響を強く受け、弾力性と強度を提供します。これらのタンパク質の繊維配向は、軟部組織の種類に依存し、単一の好ましい方向から複雑なメッシュネットワークまでさまたえ、疾患組織で変化する可能性があります。したがって、軟部組織は、多くの場合、細胞および器官レベルで異性体的に動作し、三次元特性評価の必要性を作成する。複雑な生体組織または構造内の歪み場を確実に推定する方法を開発することは、疾患を機械的に特徴付け、理解するために重要である。ひずみは、軟部組織が時間の経過とともに相対的に変形する様子を表し、様々な推定を通じて数学的に記述することができる。

時間の経過とむいて画像データを取得すると、変形やひずみを推定できます。しかし、すべての医療画像モダリティはある程度のノイズを含み、生体内株を正確に推定する難易度を高めます。ここで説明する手法では、直接変形推定(DDE)法を使用して、体積画像データから空間的に変化する 3D ひずみフィールドを計算することで、これらの問題をうまく克服します。

電流ひずみ推定方法には、デジタル画像相関(DIC)およびデジタル体積相関が含まれる。残念ながら、DICは2D平面からのひずみを正確に推定することしかでき、この方法の適用を厳しく制限します。DIC などの 2D 法は有用ですが、3D 変形を受ける領域での歪みを定量化するのが困難です。これは、面外モーションによって変形エラーが発生するためです。デジタルボリューム相関は、初期ボリュームデータを領域に分割し、変形ボリュームの最も類似した領域を検出し、面外誤差を低減する、より適用可能な方法です。しかし、この方法はノイズに敏感であることを証明し、材料の機械的特性に関する仮定を必要とします。

ここで実証した技術は、DDE法を用いてこれらの問題を排除し、医療画像データの解析に非常に有用である。さらに、それは高いか局所的なひずみを強くする。ここでは、ゲート、体積4D超音波データの取得、分析可能な形式への変換、および3D変形とそれに対応するグリーンラグランジュ株を推定するためのカスタムMatlabコードの使用について説明します。グリーンラグランジュひずみテンソルは、変位の最小二乗フィット(LSF)からFを計算することができるため、多くの3Dひずみ推定法で実装されています。次の式は、グリーン ラグランジュひずみテンソルEを表し、FIはそれぞれ変形勾配と 2 次 ID テンソルを表します。

Equation 1(1)

原則

4D超音波は、超音波トランスデューサに取り付けられた直線的に翻訳されたモータを利用して取得されるダイナミックボリュームであり、目的の領域全体にわたる連続的な心臓および呼吸ゲートビデオループの取得を可能にする。この方法は、肥大や梗塞が固有の幾何学を引き起こす心臓などの複雑な構造を視覚化するのに役立ちます。さらに、4Dデータは、高分解能の空間および時間情報を提供することができ、これは心血管イメージングにも重要です。

4D超音波データに適用されるDDE法は、非剛性画像登録を使用するため、他の方法よりも優れています。変形勾配テンソルは、従来、デジタル体積相関に続く変位フィールドから推定されます。これに対し、DDE 法は、変形テンソルに直接類似するように慎重に選択されたワーピング関数を最適化することで、ボリューム登録時に変形勾配テンソルを本質的に推定します。ワーピング関数は、空間位置とワーピング パラメータ (p) の両方に依存します。

Equation 2(2)

この関数の最初の 3 つの要素は、変形勾配テンソルFを表し、変形の計算をワーピング関数に直接組み込むことができます。このワーピング法は、軟部組織で一般的に見られる大規模または局所的な変形を可能にするため、同様の以前の技術と比較して歪み推定の精度と精度を高めることが証明されています。

手順

1. 4D超音波セットアップ

  1. イメージングソフトウェアを使用する場合は、数学計算ソフトウェアを実行できるラップトップを使用して、4D取得プロセスを自動化します。USBポートを介して超音波システムにこのカスタムコードでラップトップを接続します。イメージングソフトウェアは、ソフトウェアに統合された4D超音波機能を備えています。
  2. 超音波システムをオンにした後、心拍数と温度ボタンがオンであることを確認しながら、生理学的監視ユニットを設定します。トランスデューサホルダーに取り付けられた3Dモータステージを初期化します。
  3. 画像取得には適切なステージと超音波トランスデューサを使用してください。すべての適切な接続が確立されていることを確認します。
  4. イメージングのための動物の麻酔と準備を進める。眼科軟膏を眼に加えて角膜乾燥を防ぎ、足をステージ電極に固定し、潤滑直腸温度プローブを挿入します。脱毛クリームを使用して、対象領域の毛皮を削除します。
  5. 脱毛クリームが取り外されていることを確認します。次いで、動物に加温された超音波トランスデューシングゲルの寛大な量を適用する。これは、4Dイメージングの対象領域全体にわたって良好な接続を作成するために特に重要です。

2. 4D超音波取得

  1. 超音波システムに関する新しい研究を開始し、Bモード(明るさモード)でイメージングウィンドウを開きます。トランスデューサを動物に下ろし、ステージ上のx軸とy軸ノブを使用して目的の領域を見つけ、呼吸数が大幅に低下しないことを確認します。画面の下部でこれを監視します。
  2. 対象領域の中央にトランスデューサを配置します。そこから、トランスデューサが上下に移動して目的の領域全体が含まれるのに必要な距離を概算します。
  3. おおよその寸法を計算ソフトウェアコードに入力します。動物の心臓と呼吸数が安定していることを確認した後、コードの実行を開始します。これは、イメージを再構築する際のエラーを減らすうえで重要です。
  4. イメージの取得が完了したら、データを生の XML ファイルとしてエクスポートします。

3. 4D超音波データ変換

  1. 3D 染色解析用にデータを適切な形式に変換できるソフトウェアに生の XML ファイルを入力します。ここでは、Matlab を使用して XML ファイルを MAT ファイルに変換します。完全な Matlab スクリプトは、こちらから入手できます。
  2. 適切な変換を行うには、フレーム数、ステップサイズ、および必要な出力解像度も入力する必要があります。
  3. マトリックスを貫通平面でリサンプリングした後、新しい MAT ファイルを 3D ひずみ解析コードに読み込みます。

4. 3Dひずみコード分析

  1. 読み込んだ MAT ファイルを適切に調整して分析を開始します。たとえば、計算時間を短縮するために、イメージ ボリュームのサイズを変更する必要がある場合があります。
  2. 解析する領域を入力し、適切なメッシュ テンプレートを決定して、イメージ データを単純なボックスまたは手動で選択したポリゴンとしてセグメント化します。領域のボックス サイズと中心点間の間隔は、データセットごとに変更する必要がある場合があります。ボックスサイズに最適な数値は、追跡対象のフィーチャのピクセル数の周りで、1 つのスライスで 2 次元のピクセル数を確認することで近似できます。ボックスの間隔によって、ひずみフィールドの解像度が決まります。ボックスが多いほど解像度は上がりますが、計算時間も大幅に増加する可能性があります。
  3. これらの各領域内でヤコビアンとグラデーションの計算を繰り重め始めます。事前計算が完了したら、ワーピング関数を適用します。
  4. 変形勾配テンソルを計算します。最初にひずみを計算し、次に直接変形推定法を使用して固有値と固有ベクトルを計算します。
  5. これらの結果は、目的の領域上のひずみフィールドを表す切断面のカラー マッピングなどの手法を使用して、目的の平面にプロットします。

結果

上記の手順を用いて、アンジオテンシンII誘発性副腎分離腹部大動脈瘤(AAA)の4D超音波を取得した。図 1に示すように、複数の短軸 EKV ビデオ ループを大オルタに沿って取得し、組み合わせて 4D データを作成します。このデータは、カスタムコードを使用してMATファイルに変換され、ワーピング関数を使用して3Dひずみ計算コードで分析されました。特定のデータセットのコードのパラメータを最適化した後、対応するひずみ値を持つ代表的な長軸ビューと、オーバーレイされたひずみカラーマップを持つ 3D スライス視覚化プロットが作成されました (図 2)。このDDE技術とひずみデータは、特に血栓が存在する場合に、ひずみの異種空間変動を強調します。これらの結果は、生体内変形と動脈瘤組成との関係を決定するために血管構造と相関させることができる。

Equation 3
図1:大オルタの心電図ゲートキロヘルツ可視化(EKV)ループは、0.2mmのステップサイズに従って、手動で入力された開始位置と終了位置から取得されます。

Figure 1
図2:収縮期(A)で表される腹大動脈瘤を解剖するマウスの4D高周波超音波データ推定およびオーバーレイ(B)(スケールバー=5mm)。動脈瘤と健康領域の両方を表す長軸ビューと短軸ビューは、1つの心臓サイクルにわたる主な株(収縮期:t=0.4)(C、D)に対応する。これらのデータは、健康な領域で比較的高いひずみレベルと解剖動脈瘤内の歪みの値の減少を示しています。

申請書と概要

生体内の機械的特性評価は、生体組織の成長と改造を理解する上で重要な部分である。既存のアプローチと比較して、ここで説明するひずみ定量手順では、相互相関の前に変形していない画像を最適にワープして3D歪みを正確に計算する改良された方法を使用しています。この方法は、組織体積内の菌株を決定する際に、いかなる材料的仮定も使用しない。残念ながら、歪みの推定は、超音波データを使用する場合、15x15x15ボクセルのカーネルサイズまでしか信頼できず、このDDEアプローチは歪みフィールド内の微妙な特徴を検出しない可能性があることを示唆しています。この制限にもかかわらず、機械的応答の調査、病理の診断、疾患モデルの改善のための重要なツールです。

大動脈瘤を超えた研究の多くの分野は、この株測定ツールの恩恵を受けることができます。心臓株はまた、この方法を用いて容易に定量することができる。心筋は心臓周期中に3D変形を起こすため、この組織のダイナミクスを確実に特徴付けるためには、3次元での歪みを定量することが不可欠です。信頼性の高いひずみデータは、動物モデルにおける疾患の進行を追跡する際に特に重要です。

3Dひずみ解析は、腸内超音波イメージングにも適用できます。腸組織の機械的特性評価は、最も一般的にインビトロで行われる.しかし、これは常に周囲の構造からの影響のために生体内の腸の実際の行動の真の表現ではありません。このアプローチを臨床的に翻訳する例として、異常な発光圧による腸線維症の画像から株を計算することは、外科的介入を必要とする問題のある領域の早期発見を提供し得る。

大規模なアプリケーションを超えて、この方法は、共焦点顕微鏡などの高解像度のイメージング技術を使用して細胞レベルに適用することもできます。細胞外マトリックスの特徴付けは、細胞がどのように通信するかを理解するために重要です。生化学的特性評価に関して多くの研究が行われてきたが、機械的応答を通じてコミュニケーションがどのように行われるかを理解するには、変形と歪みを理解する必要がある。変形変化の起源を決定する方法がないため、バルクひずみは有益ではありません。高解像度の DDE アプローチを適用すると、細胞外マトリックスが機械的な変化にどのように反応するかを直接明らかにできます。

確認

我々は、ジョン・ボイル、ガイ・ジェニン、スタヴロス・トコモプーロスがラグランジュ・グリーン株を直接推定できるDDEカスタムマトラボコードの貢献を認めたい。

タグ

スキップ先...

0:07

Overview

1:14

Principles of Strain Mapping

3:40

4D Ultrasound Set-up

4:58

Ultrasound Image Acquisition

5:45

Image Analysis

7:30

Results

8:41

Applications

10:02

Summary

このコレクションのビデオ:

article

Now Playing

腹部大動脈瘤の定量的ひずみマッピング

Biomedical Engineering

4.6K 閲覧数

article

光学・共焦点顕微鏡による生体試料のイメージング

Biomedical Engineering

35.7K 閲覧数

article

生体試料のSEMイメージング

Biomedical Engineering

23.5K 閲覧数

article

ナノドラッグキャリアのバイオディストリビューション:SEMの応用

Biomedical Engineering

9.3K 閲覧数

article

腹部大オルタの高周波超音波イメージング

Biomedical Engineering

14.4K 閲覧数

article

インフラレナル大オルタにおける血液と脂質を画像化する光音響断層撮影

Biomedical Engineering

5.7K 閲覧数

article

心臓磁気共鳴イメージング

Biomedical Engineering

14.7K 閲覧数

article

脳動脈瘤における血流の計算流体力学シミュレーション

Biomedical Engineering

11.7K 閲覧数

article

腹部大動脈瘤の近赤外蛍光イメージング

Biomedical Engineering

8.2K 閲覧数

article

非侵襲的な血圧測定技術

Biomedical Engineering

11.9K 閲覧数

article

心電図(心電図)信号の獲得と解析

Biomedical Engineering

104.8K 閲覧数

article

リバーブルバイオマテリアルの引張強度

Biomedical Engineering

7.5K 閲覧数

article

マウス脊髄のマイクロCTイメージング

Biomedical Engineering

8.0K 閲覧数

article

ラットにおける非侵襲的ACL損傷後の膝関節変性の可視化

Biomedical Engineering

8.2K 閲覧数

article

SPECTとCTイメージングを組み合わせて心臓機能を可視化

Biomedical Engineering

11.0K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved