JoVE Logo

サインイン

炎イオン化検出ガスクロマトグラフィー (GC)

概要

ソース: 研究所博士 b. ジル Venton - ヴァージニアの大学の

ガス ・ クロマトグラフィー (GC) が分離し、ガス相で分子量が小さい化合物を検出する使用されます。サンプルは、ガスまたは注入口で気化した液体です。通常、分析化合物は、大きな化合物を気化しにくい未満 1,000 Da です。それは非常に信頼性が高く、ほぼ継続的に実行することができますので、GC は環境モニタリングおよび産業用アプリケーションで人気です。小さく、揮発性の分子が検出されたアプリケーションと非水溶液、GC は、通常使用されます。液体クロマトグラフィーは、水溶液サンプルでの測定より人気があり、分子が蒸発させる必要がないのでより大きい分子を研究に使用できます。LC は極 analytes の分離のより一般的な非極性分子の GC は支持されます。

ガス ・ クロマトグラフィーの移動相はキャリアガス、通常ヘリウムの低分子量、化学的に不活性のためです。圧力が適用され、モバイルのフェーズで列を検体に移動します。分離は、液相をコーティングしたカラムを使用して行われます。中空毛細管カラムは最も人気のある列で、毛細血管の壁にコーティングした固定相を持っています。固定相はポリジメチルシロキサンの誘導体の分離をチューニングする機能グループの 5-10% と多い。典型的な官能基、フェニル、シアノプロピル, または trifluoropropyl のグループです。キャピラリーカラムは、通常 5-50 メートルです。狭い列のより高い解像度がより高い圧力を必要とします。詰められたコラムは、ビーズを充填したカラムの固定相のコーティングでも使用できます。詰められたコラムが短く、1-5 メートル、高効率、高速解析を許可する高い容量を持つ開いている尿細管毛細血管が一般に好ましい。

炎イオン化検出 (FID) は、サンプルの炭素の量を検出する GC における有機化合物の良い一般的な器です。列の後のサンプルはホット、水素-空気火炎で焼かれて。炭素イオンは、燃焼によって生成されます。プロセスの全体的な効率が低い (1 の 105炭素イオンを炎のイオン生成) のみイオンの総量は、サンプル中の炭素の量に直接比例。電極は、イオンからの電流を測定するために使用されます。FID は、サンプル全体を熱分解した破壊的な検出器です。FID は不燃ガスと水によって影響を受けるです。

原則

ガス ・ クロマトグラフィーの平衡をパーティション分割してサンプルのコンポーネントに分割されます (すなわち配布) 2 つのフェーズ: 移動相と固定相。固定相に強い親和性を持つ化合物列に多くの時間を費やすと従って溶出後、移動相より高い親和性を有するサンプルより長い保持時間 (tR)。固定相への親和性は分子間相互作用によって主に駆動し、固定相の極性は、相互作用そしてこうして分離を最大化する選択ことができます。理想的なピークがガウス分布と対称、列と試料の相互作用のランダムな性質のため。非対称的なピークなどに面し、テーリング ピーク列、インジェクションの問題、またはカルボン酸など吸着官能基の存在をオーバー ロードのためすることができます。

GC では、温度を調整して、平衡およびこうして溶出時間を変更します。温度が低い場合、高沸点物質が列に凝縮がありますので GC で分離が揮発性に基づいている、従って彼らは溶出がないまたは溶出に長い時間がかかります。一定の温度で等温の色分解を実行または勾配分離は分離の間に、温度はランプアップが実行されます。温度ランプは、同じ分離における分離へのポイント両方低、高沸点化合物を許可します。

GC によって生成される読み出しは時間の経過とともに合図するクロマト グラムです。サンプルの各化合物のピークが観察されます。各ピークのピークの高さやピーク面積を計算できます。一般的に、ピーク面積を使用すると、較正曲線を作成し、未知試料の濃度を計算します。理論プレート (N) の数は、カラム効率の測定を与える各ピークから計算されます。測定 N の実用的な方程式は、N = 16(tR/W)2 tRは試料の保持時間、W がピークの底部の幅です。N を使用すると、別の列で色分解を比較します。

炎イオン化検出器は質量敏感です。したがって、信号の量はほくろの数ではなく、サンプル中の炭素の質量に比例します。多くの炭素化合物は、大きい信号を与えます。炭素の燃焼が電流として検出されるイオンを生成します。FID は、picogram の範囲で検出限界と GC の最も敏感な一般的な検出器のひとつです。応答が線形以上 7 桁、それに大規模な線形範囲を与えます。

手順

1. GC の初期化

  1. キャリア ヘリウムガスと空気を有効にし、計測器の圧力計を調整します。
  2. 高温にカラム オーブンをオンに (通常 250 ° C 以上) 列で焼くため。列の最大温度を超えないようにします。これは、任意の汚染物質が削除されます。サンプルを実行する前に、少なくとも 30 分間焼いてましょう。

2. 作る方法ファイル

  1. 計測器を制御するソフトウェア、方法ファイルのすべての必要な値を入力します。まず、オート設定を設定します。実行後のリンス、実行前のすすぎとリンス サンプル数を設定します。これらお手入れが異なるサンプルの間の列。
  2. 注入量は、通常 1 μ L です。分割比率は、列をオーバー ロード可能性がありますすべてのサンプルを注入するために通常設定されます。分割比は 100: 1、計測器が注入されるすべての 1 部分の 100 の部分が無駄になることになります。
  3. 移動相のパラメーターを入力します。流量は、圧力のセットによって制御されます。流れの速度で高速分離につながるが、検体列と対話するための短い時間があります。
  4. 温度プログラミングを入力します。等温的に分離し、分離のための時間の温度を入力します。グラジェント溶を開始温度を入力押し時間、終了温度 ° C/分で、時間とランプの速度を保持します。平衡化時間は、実行の間元の温度をクールに列をことができますも設定されます。
  5. 検出器のパラメーターを入力します。検出器温度とサンプリング レートが入力されます。検出器は、検出器の試料が凝縮しないカラム温度よりも高い温度に常になりません。
  6. 方法ファイルを保存します。パラメーターは、GC によって読み取られるようにダウンロードする必要がありますも。

3. GC データ集

  1. 水素ガスを切り、圧力計が正しく設定されていることを確認します。FID の炎を点灯します。
  2. オートサンプラー ラック洗浄溶剤、アセトニ トリルやメタノールのような洗浄バイアルを入力します。廃棄物のバイアルが空かどうかを確認します。
  3. サンプルを準備します。サンプル中の微粒子の任意のチャンスがある場合は、サンプルをフィルターします。プラスチック残留物は、GC で時々 見ることができる、唯一のガラスを使用して注射器やガラス瓶、サンプルを準備します。
  4. サンプルをピックアップするオートサンプラー注射器は保障されるので、サンプルでバイアルの少なくとも半分の方法を入力します。オートサンプラー バイアルは通常 2 mL、試料量が限られている場合バイアル挿入必要検体量を減らすために使用できます。
  5. オートサンプラー ラックにサンプル バイアルをロードします。各サンプルは、どのような位置を追跡します。
  6. 実行する前にコンピュータ ソフトウェアにチャート レコーダーのベースラインはゼロします。
  7. 単一の実行または複数の実行のバッチ テーブルを使用して、ファイルを収集できます。サンプルの正しいバイアル数を指定することを確認します。「スタート」ボタンを押すファイルを作成します。
  8. データを通常ソフトウェア プログラムで解析します。測定することができるパラメーターには、保持時間、ピーク高さ、ピーク領域、および理論的な版の数が含まれます。

4. 結果: コーヒーの GC 分析のサンプルします。

  1. この例では、カフェインとパルミチン酸、コーヒーで見つかった 2 つの化合物のためのガスクロマト グラフ分析を行った。カフェインが少ないパルミチン酸、長鎖アルカン尾より極です。このように、カフェインは少ない保持され、ジメチルポリシロキサン 95% と 5% フェニル arylene (図 1) の非極性カラムの最初を示しています。
  2. 、クロマト グラムからピーク面積を計算できます。ピーク面積が検出器を通過する炭素の質量に比例しているし、楽器の応答対濃度の検量線を作成する使用できます。図 1、ピーク面積はカフェイン 27,315 とパルミチン酸の 18,852 です。
  3. カラム効率の測定は N、理論的な版の数。N は、各ピークのクロマト グラムから算出できます。図 1N はカフェインの 283,000 とパルミチン酸の 261,000 です。
  4. 図 2は、等温色分解に温度の影響を示しています。2 つの版は、同じカフェインとパルミチン酸のサンプルのオーバーレイされます。最初は 180 ° C、200 ° C で 2 番目、します。保持時間ははるかに小さくなり高温を実行です。

Figure 1
図 1。カフェインとパルミチン酸試料のガスクロマト グラフ分析します。まず、標準の 5 mM カフェインを示して 1 mM パルミチン酸サンプルが続きます。温度ランプ 5 分間温度を開催 220 ° C に 10 ° C/分でランプに続く 150 ° C で 0.1 min であった。

Figure 2

図 2。ダーク ロースト コーヒー サンプルの等温のランのガスクロマト グラフ分析します。180 ° C、ダーク ロースト コーヒー サンプル 200 ° C でガスクロマト グラフの比較が実行されます。ピークは 200 ° C の温度ではるかに速く溶出します。

申請書と概要

GC は、様々 な工業用アプリケーションに使用されます。たとえば、合成化学製品の純度をテストするものです。GC も環境用途で人気です。GC は、フタル酸エステル類、多環芳香族炭化水素、農薬を検出するために使用されます。ほとんど空気品質のアプリケーションでは、ガスクロマト グラフを使用して、環境汚染物質を監視します。GC は、ヘッド スペース分析、液体から蒸発する揮発性物質を収集され、測定にも使用されます。これは、化粧品と食べ物と飲み物産業に便利です。GC は法医学のアプリケーションだけでなく、薬物乱用や爆発物の検出などに使用されます。さらに、GC は炭化水素を測定するため石油業界で役に立つです。広範なアプリケーションは、今年世界市場あたりの 10 億ドルを GC になります。

図 3は、GC が食品業界で使用する方法の例を示します。図 3に示す人工バニラ (黒) のクロマト グラフと実際のバニラ (赤)。GC は、バニリンの大きなピークが含まれていますが、エチルバニリンの 2 番目のピークが含まれていない本当のサンプルを識別するために使用できます。

Figure 3

図 3。バニラのサンプルのガスクロマト グラフ クロマト グラム。模倣と実質バニラ バニラ、バニラの主成分により 4.7 分の大きなピークを表示します。ただし、エチルバニリン、化合物が原因である 5.3 分で大きなピークにも模造バニラ実質バニラで大量に存在しません。

タグ

Gas ChromatographyFlame Ionization DetectionGC TechniqueVolatile CompoundsGas PhaseLiquid SamplesInert GasColumn CoatingAnalytes SeparationNonpolar ChemicalsMass Less Than 1000 DaltonsVaporizationLiquid ChromatographyInjection PortHeating ChamberInert Gas CarrierMobile PhaseHeated ColumnAnalyte DetectionElutionDetectorComputer Analysis

スキップ先...

0:00

Overview

1:06

Principles of Gas Chromatography

3:54

Instrument Initialization

5:37

Running the GC

6:32

Representative Results: Quantification of Caffeine and Palmitic Acid in Coffee

7:28

Applications

8:59

Summary

このコレクションのビデオ:

article

Now Playing

炎イオン化検出ガスクロマトグラフィー (GC)

Analytical Chemistry

282.5K 閲覧数

article

試料分析の準備のため

Analytical Chemistry

84.9K 閲覧数

article

社内基準

Analytical Chemistry

205.0K 閲覧数

article

標準添加法

Analytical Chemistry

320.4K 閲覧数

article

検量線

Analytical Chemistry

797.8K 閲覧数

article

(紫外-可視) 紫外可視分光法

Analytical Chemistry

624.4K 閲覧数

article

ラマン分光を用いた化学分析

Analytical Chemistry

51.3K 閲覧数

article

蛍光 x 線 (XRF)

Analytical Chemistry

25.6K 閲覧数

article

高速液体クロマトグラフィー (HPLC)

Analytical Chemistry

385.3K 閲覧数

article

イオン交換クロマトグラフィー

Analytical Chemistry

264.7K 閲覧数

article

キャピラリー電気泳動 (CE)

Analytical Chemistry

94.2K 閲覧数

article

質量分析への紹介

Analytical Chemistry

112.5K 閲覧数

article

走査型電子顕微鏡 (SEM)

Analytical Chemistry

87.3K 閲覧数

article

ポテンショスタット/Galvanostat を使用して担持触媒の電気化学測定

Analytical Chemistry

51.5K 閲覧数

article

サイクリックボルタンメトリー (CV)

Analytical Chemistry

125.5K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved