Method Article
静電容量センサーとの組み合わせでの刷り込みが分子を使用して複雑なソリューションで検出および低分子の定量化のプロトコルを紹介します。
能力を検出し、生体分子の複雑なソリューションを量的に表わす自然科学にレアピースずっとバイオ マーカー、汚染物質、および興味の他の分子を検出するために使用されています。この目的のための一般的な手法は、酵素 (60) ELISA)、多くの場合 1 つの抗体は特定のターゲット分子に向けて、第 2 標識抗体を一次抗体の検出用を可能にする、調査の下で生体分子の絶対定量。ただし、認識要素として抗体の使用制限メソッドの堅牢性使用する必要性は、分子をラベル付けします。これらの制限を克服するために分子インプリンティングが実装されている人工的な認識サイトのテンプレート分子に相補的な作成および初期バインドを抗体を使用しての必要性を時代遅れします。さらに、さらに高い感度、標識二次抗体はターゲット分子の定量化のための容量に依存するバイオ センサーによる置き換えることができます。このプロトコルが迅速かつ無料のラベルを検出し、ELISA など一般的に使用される検出システムよりかなりよい感度で低豊富な生体分子 (タンパク質とウイルス) 複雑なサンプルを量的手法について述べる。これはすべての容量バイオ センサーとの組み合わせで分子インプリンティングによって媒介されます。
生体分子の定量化は、科学、ラジオイムノアッセイ (RIA) や elisa 法1のような手法の中の多くのさまざまな研究分野で使用されます。これらのメソッドのいくつかをラベル付き必要と放射性同位体や酵素のような試薬標識抗体/抗原、手間と時間のかかる複雑な手順2となります。さらに、堅牢性、選択性、およびこれらの方法の感度不十分なもののすべての解析;特に attogram 量は、ピクトグラム数量3ではなく、分析する必要があるとき、彼らは十分ではありません。このため、バイオ センサーでは、堅牢性の向上のための分子インプリンティングとの組み合わせで特に注目4、5を得ています。
分子インプリントはテンプレート6、完全にテンプレート7のような人工的な認識サイトを作成する周辺機能性モノマーを重合して空洞を作成するのに依存しています。この手法は、バイオ センサー8,9,10生体認識要素としても薬物送達システム、分析分離など、いくつかのアプリケーションのために使用されています。しかし、まだ分子インプリント高分子 (MIPs) 蛋白質および細胞11,12のような高分子のテンプレートの設計にいくつかの困難があります。このため、多くの研究者がターゲット蛋白質12によって認識されるサーフェスを作成するため、基板上に直接テンプレート蛋白質を刷り込みに焦点を当てた。大きな分子のタンパク質を含むアセンブリ認識空洞を採用するために使用この表面のコーティング技術は、刷り込みの13,14μ と呼ばれます。法の一般的な手続きによって異なります - テンプレート スタンプと高分子サポート - テンプレートを 1 面15,16、吸着との接触に持って来られるのために 2 つサーフェス間重合、モノマー処理表面。この方法で薄いポリマー フィルムは、UV 重合を介してサポートに形成されます。最後に、テンプレート特定空洞刻印電極の表面を残して、テンプレートが削除されます。このメソッドでは、刻印の分子の減らされた活動の損失を含むの利点、刷り込みのテンプレート分子の同様に必要とする非常に少量処理16,17あります。したがって、ユーザーの選択の任意のテンプレートをターゲット センサー表面にこれらのコスト効果の高い、安定性、敏感、選択的な表面を作成できます。
バイオ センサーは、単一蛋白質のウイルスを含むより大きな生体高分子検出に使用できます。最近関心を集めてウイルスの特定のグループは、細菌に感染するウイルスであるバクテリオファージです。バクテリオファージの迅速・高感度検出は重要なバイオ中およびバクテリオファージ18細菌文化の感染症を特定するためにバイオ医薬品プロセス。バクテリオファージ検出のため最もよく使用される生物学的アッセイは二重層寒天法19、手間と時間のかかる作業であります。原子間力顕微鏡 (AFM)20、干渉法21、22、電気化学センサー システム23,などのウイルス (バクテリオファージを含む) 新しい診断ツールを開発するいくつかの試みを行った24. バイオ センサー操作が簡単、高感度、およびリアルタイム計測15、25の対応として彼らの利点のために多くの仕事が集中しています。バイオ センサーの特定の種類は、静電容量の変化に基づきます。これらの容量のバイオ センサー、電気化学センサーの変化を測定する誘電特性の検体は、センサー表面に生体認識要素を操作したときの容量の2,4 の低下を引き起こす.容量性バイオ センサーは、抗原、抗体、タンパク質、および重金属イオン6,26,27,28のような様々 な検体の検出のために使用されています。これらのタイプのバイオ センサー29をラベリングなし固有の速さ、高感度、シンプル、低コスト、簡単操作、リアルタイム測定のような多くの利点があります。
記載方法は、検出を可能にする非常に複雑なサンプル、すべてのラベルを使用する必要性なしで低豊富な生体分子の定量化を目指しています。特に、技術は、他の商業的に既存の計測器が正確に彼らのターゲットを量的に失敗生体分子の atto picogram 範囲で最適です。
1. ガラス カバー スリップ (テンプレート スタンプ) の修正
2 容量性電極の修飾
3. テンプレートの準備刻印容量電極
4. 走査電子顕微鏡 (SEM) による電極表面のキャラクタリゼーション
5 テンプレート リアルタイムで静電容量計測刻印容量電極
次の図 1の模式図によると、プロトコルによって裸の金電極は、高分子の構造を表すテンプレートと刻印が。この電極は、テンプレートのバインド時に容量、電極上にテンプレートの安定したアプリケーションと変化の測定を可能にする静電容量センサー (図 2) で適用できます。
静電容量方式センサーの概略は図 2に示します。Centris ポンプは、フロー ・ セルに再生時に実行中のバッファー (10 mM リン酸塩、pH 7.4) と再生バッファー (25 mM グリシン塩酸、pH 2.5) の連続注入を担当は図に明確に見ることができます。フロー ・ セルは、作業、リファレンス、およびカウンター電極で構成されています。標準蛋白質/バクテリオファージのソリューションは、最初、脱通過の噴射弁を構成し、システムに順次注入します。ソリューションのフロー ・ セルに挿入された作用電極に達すると、すぐに結果がリアルタイムで監視されます。静電容量値は、コンピューターの画面上、sensorgrams に従うことによって登録できます。
図 3と図 4は、裸と刻印の金電極表面の違いを表しています。この評価手順は、インプリント後の電極表面の粗さと見られて、高分子の空洞があることを確認することが重要です。SEM から離れてまた接触角測定、原子間力顕微鏡を含むその他の評価方法、エリプソメトリー等インプリント後表面を特徴付けるために使用することができます。この方法では、刷り込みのプロセスが成功したことと、テンプレート空洞が表面に形成されることそれ確保できます。これらのキャビティ内で高い特異性と親和性を持つテンプレートをバインドできます。
静電容量方式のシステムに標準溶液を注入後、最後の 5 つの測定値の平均は、ソフトウェアによって自動的に計算だったし、検量線の濃度とキャパシタンスの変化をプロットすることによって得られた、検体。登録容量の減少は、テンプレートのバインドによって生じた。金電極に結合するより多くの分子表面、高い静電容量の減少容量測定の一般的な原則によると。図 5と図 6は、試料の濃度を増加させるで、ΔC が期待どおりを増加するを表示します。(間がシステムが特定のターゲットの検出に有用な濃度範囲) ダイナミック レンジと検出 (LOD) の制限は、これらのグラフを分析することによって評価できます。図 6によると刻印バクテリオファージ静電容量式センサーは、10 の濃度範囲でバクテリオファージを検出できます1 - 105 pfu/mL、今回 10 pfu/mL の LOD 値で。図 5と図 6テンプレートの濃度もハイライト同じ間隔で較正曲線の測定の必要性が必要なはずですが、回帰の直線性は濃度 (上異なる場合がありますので図 5)、または勾配が異なる (図 6)。低濃度のため使用を指摘する必要があります、システムが (サンプル、通風等の濁度) の変動に非常に敏感、したがって、それは、少なくとも実行する推奨の飛び地を含む可能性を軽減するトリプリケート.同じ理由で、標準偏差は、図 6に見られるように非常に希釈サンプルのかなり大幅にできます。
図 1.メソッドを刷り込み μ の略図。ガラス カバー スリップ (テンプレート切手) の (A) 準備 (B) 容量の金電極の作製 (C) μ 刷り込み UV 重合および (D) による金電極表面上にテンプレートの電極表面からのテンプレートの削除 (Ertürkら、バイオ テクノロジー レポート 2014 (3) からの転載: 65-72 権限を持つ)。この図の拡大版を表示するのにはここをクリックしてください。
図 2。静電容量センサーの概略図。本研究で使用される容量性バイオ センサーの一般的なレイアウト (Ertürkら、バイオ テクノロジー レポート 2014 (3) からの転載: 65-72 権限を持つ)。この図の拡大版を表示するのにはここをクリックしてください。
図 3。タンパク質の走査電子顕微鏡観察刻印電極。(A) 裸の金電極の SEM 像 (スケール バー = 20 μ m)、タンパク質 (B) プリント金電極の静電容量 (スケールバー = 10 μ m)。この図の拡大版を表示するのにはここをクリックしてください。
図 4。バクテリオファージの走査電子顕微鏡観察刻印電極。裸の金電極の SEM 像 (スケール バー = 20 μ m) (A)、バクテリオファージ刻印異なる倍率で金電極の静電容量と (x、スケール バー 6600 = 10 μ m) (B)、11、500 X、スケール バー = 5 μ m) (C);矢印を示す付着バクテリオファージ)。この図の拡大版を表示するのにはここをクリックしてください。
図 5。検量線のバッファー組成の影響。最適な条件でのタンパク質濃度対静電容量の変化を示すグラフ (実行バッファー: 50 mM トリス-HCl、pH 7.4;PH 2.5 トゥイーン 20; 50 mM を含むグリシン塩酸 25 mM 再生バッファー:流量: 100 μ L/分、試料体積: 250 μ L;T: 25 ° C)。この図の拡大版を表示するのにはここをクリックしてください。
図 6。代表的な検量線を大きな生体高分子。最適な条件でバクテリオファージ濃度対静電容量の変化を示すグラフ (実行バッファー: 10 mM リン酸塩、pH 7.4;PH 2.5 トゥイーン 20; 50 mM を含むグリシン塩酸 25 mM 再生バッファー:流量: 100 μ L/分、試料体積: 250 μ L;T: 25 ° C)この図の拡大版を表示するのにはここをクリックしてください。
この方法を行った場合、プロトコルに従いながら考慮する必要がありますいくつかの重要なステップがあります。酸性ピラニア溶液で洗浄のステップ 1 つ重要です。ステップ 2.1 は 10 分以上にはなりません。これらの値は、以前に最適化されているので、手順 1.4 テンプレート ソリューションは 0.1 mg/mL を超えない。繰返し voltametric スキャン最適膜厚を得るためには、15 サイクルを超えない。3.1.3 のステップ、1.5 μ L、最適化された値です。この値は、高い電極のこの特定の種類はなりません。UV 硬化システムは、400 W の電源は、10-15 分の最大重合が実行する必要があります。APS (イニシエーター) を TEMED 後ソリューションに追加すると、すぐに後続の手順は即時重合 (ステップ 3.2.5) を避けるために非常に迅速に実行する必要があります。
最も重要な手順の 1 つは、UV 重合後の表面からテンプレートのスタンプの取り外しです。電極の表面に高分子膜がかもしれないリスクがあるこのステップが正しく実行されなかった場合、スタンプが削除されます。したがって、重合後、電極と水の溶液に上タンパク質スタンプに没頭し、表面 (ステップ 3.1.6) から非常にゆっくりと慎重にスタンプを削除することをお勧めします。
使用されるテンプレートに基づいて、タイプおよびモノマー (機能性モノマーおよび架橋剤) の比率で変更はより高い感度を生成することに関して評価があります。これは経験的に決定する必要があります。さらに、テンプレート分子の親和性の結合は通常は同時にいくつかの異なる相互作用を伴います。したがって、これは再生の手順中に問題につながる可能性があります。バインドされるテンプレートは正しく表面からリリースされていない場合さらなる分析のための電極の再利用性に影響を与える可能性がありますこれ。これらの多地点間の親和性が弱い相互作用を通じて連結からもあります。このようなシステムで、非特異的結合はシステム16の選択性に悪影響を及ぼすことができる場所をかかることがあります。これらは、メソッドの一般的なそして、一般的な制限です。
これらの特定の制限から離れて、既存のメソッド上議論の方法の多くの重要な利点があります。Ria、Elisa、および蛍光測定は、非常に敏感なラベル素材 (テンプレートまたは検出器) の使用法、バイオ センサーは完全にラベル-無料が必要です。これらのメソッドは、またより高価な時間のかかる。バイオ センサー法は異なる組成で同じ時間16MIPs の急速な並列合成できます。モノマー溶液のだけいくつかマイクロリットルは準備に必要なため、高価なまたは別の方法で限られたモノマーを使用するとき、メソッドは便利です。さらに、単一の MIP 電極は、他の既存の方法30より有意に高いパフォーマンスが大幅に低下することがなく約 80 の解析に使用できます。既存のメソッドで苦しむ度合いは、低感度と選択度の説明メソッドできます午後範囲の分子の検出と定量高選択性を持つ。
費用対効果、既存の方法と比較して短い時間でリアルタイムの鋭敏な検出と、計測器を作動させる容易さのため、バイオ センサーは非常に有望ポイントのフィールド条件の下でケア検知システム例えば、環境モニタリングや発展途上国のアプリケーション。疾患の診断に多くのアプリケーションで血清などの複雑な混合物でバイオ マーカーのリアルタイム、選択的で高感度迅速検出は必要な15,25です。ここでは、バイオ センサーは、その堅牢性と感度のため既存のメソッドに優れています。感染性病原体の検出のため具体的にはバクテリオファージ最近そのホスト細菌特異性の33,34,35のためのバイオ センサーの代替生体認識要素とみなされます。バクテリオファージの抗体の交換はコストを削減し、安定性もさらに36を増加するために非常に有望です。このようなシステムはまた検出と環境では、臨床検体からの特異ファージの定量化のましょう。バクテリオファージ、そして細菌抗生物質耐性遺伝子37,38を変換する能力の有病率、ためこのような方法は耐性菌の広がりを学ぶ貴重なかもしれません。
著者が明らかに何もありません。
マリア ・ ゴットリープ ・ バウムガルテン (IQ バイオ テクノロジー プラットフォーム、感染症医療、ルンド大学) および走査電子顕微鏡像を提供することを目的として認められています。この作品は、イニシアチブの一環として、欧州 3 共同プログラミング抗菌抵抗 (JPIAMR) の呼び出し「伝達ダイナミクス」、スウェーデン研究評議会 Formas (2017-00100) からの助成金によって支えられました。資金提供者には、研究デザイン、通訳、執筆、著作物を出版する原稿、決定を提出、または決定の準備の役割はなかった。
Name | Company | Catalog Number | Comments |
Glass Cover slips | ThermoFisher | 102222 | protein stamp |
HCl | Sigma-Aldrich | H1758-500ML | cleaning |
NaOH | Sigma-Aldrich | 72068-100ML | cleaning |
Ultrasonic cleaner | Branson Ultrasonic | BRANSONIC M1800- E | cleaning |
3-amino-propyl-triethoxysilane (APTES) | Sigma-Aldrich | A3648-100ML | modification |
EtOH | Sigma-Aldrich | 1009836010 | rinsing/cleaning |
glutaraldehyde | Sigma-Aldrich | G5882-100ML | cross-linker |
acetone | Sigma-Aldrich | 34850-1L-M | cleaning |
H2SO4 | Sigma-Aldrich | 339741-100ML | piranha solution |
H2O2 | Sigma-Aldrich | H1009-500ML | piranha solution |
tyramine | Sigma-Aldrich | T90344-5G | modification |
CompactStat | Ivium Technologies | CompactStat.h: 30mA@10V/3MHz | potentiostat |
Platinum Counter Electrode Kit | Equilabrium | AFCTR5 | potentiostat |
Reference Electrode | Equilabrium | RREF0021 | potentiostat |
acryloyl chloride | EMD Millipore | 8.00826.0100 | modification |
triethylamine | EMD Millipore | 8.08352.0100 | modification |
toluene | Sigma-Aldrich | 244511-100ML | modification |
N-hydroxymethyl acrylamide | Sigma-Aldrich | 245801-100G | functional monomer |
poly ethylene glycol-400-dimethacrylate | Sigma-Aldrich | 409510-250ML | cross-linker |
2-Hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone | Sigma-Aldrich | 410896-50G | functional monomer |
UV polymerizator | Dymax | Dymax 5000ECE | UV-polymerization |
forceps | Sigma-Aldrich | Z168777-1EA | consumable |
1-dodecanethiol | Sigma-Aldrich | 471364-100ML | blocking agent |
acrylamide | Sigma-Aldrich | A3553-100G | functional monomer |
N-hydroxymethylacrylamide | Sigma-Aldrich | 245801-100G | functional monomer |
N-isopropylacrylamide | Sigma-Aldrich | 415324-50G | functional monomer |
methylenebisacrylamide | Sigma-Aldrich | 146072-500G | cross-linking monomer |
N,N,N',N'-tetrametyhlethyldiamine (TEMED) | Sigma-Aldrich | T9281-25ML | catalyst |
ammonium persulphate | Sigma-Aldrich | A3678-25G | initiator |
Capacitive biosensor | CapSenze | Equipment | |
Glycine | Merck | 1042011000 | regeneration buffer |
Tween-20 | Sigma-Aldrich | P9416-50ML | regeneration buffer |
Trizma base | Sigma-Aldrich | 93352-1KG | running buffer |
Na2HPO4 • 2H2O | Calbiochem | 567547-1KG | running buffer |
NaH2PO4 • 2H2O | Calbiochem | 567549-1KG | running buffer |
DELPHI correlative light and electron microscope | Phenom-World | equipment | |
Capacitive gold electrodes | CapSenze Biosystems | consumables | |
2,2'-azobis(2-methypropionitrile) | Sigma-Aldrich | 441090-25G | photo-initiator |
CapSenze Smart Software | CapSenze Biosystems | software program |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved