Method Article
Electrical Penetration Graph (EPG) is a well-established technique for studying the feeding behavior of stylet-bearing insects. Here we show a new application of EPG as a non-invasive tool for the acquisition of intracellular electrophysiology recordings of sieve elements (SEs), the cells that form the phloem vasculature in plants.
細胞の電気生理学的特性は、多くの場合、それらの天然の環境からそれらを解離した後、in vitroで検討されています。しかし、生体内の離れた細胞間の電気伝送の研究は、 生体内でそれらの天然の環境内に埋め込 まれた細胞のアーチファクトのない録音が必要です。工場で無傷の領域に負傷からの電気信号の伝送が長いので、植物学者の興味をそそりました。師部、植物全体に広がっている植物の血管系の住んでいる部分は、植物内の電気伝送における主要な組織として仮定されています。適切な電気生理学的方法の欠如は、in vivoでの師部細胞の電気的特性の研究のための多くの課題を提起します。ここでは、電気浸透GRAで統合された、生きているアブラムシを使用してふるい要素(SES)の細胞内電気生理学、または他の師部送り半翅目昆虫のための新しいアプローチを提示pH値(EPG)回路。この方法の汎用性、堅牢性、および精度により、記録し、モデル植物のシロイヌナズナ 1の中心静脈からのSEに詳細に傷誘導性の電気信号を調べるために行きました。ここでは、EPG電極を容易に限界静脈内のSEの細胞内電気生理学的記録のために実施することができるだけでなく、いくつかの外部刺激に電気信号に応答するのSEの能力を研究することを示しています。 EPGのアプローチは、細胞内のSEの電気生理学に適用植物/昆虫組み合わせの多数であり、多くの研究目的のために、植物種の多種多様に実施することができます。
長距離電気信号を生成する能力は、外部刺激に対する効率的な応答を可能にする多細胞生物の有利な特性です。この特性は、植物および動物において独立して進化し、したがって、収束進化の場合を示しています。電気信号は、例えば、神経伝達や筋肉の収縮、分子的基礎、変速機の機構、および動物における刺激によって誘発される電気信号の関数として、動物で重要な機能に結合されていることを考えると、集中的な研究の対象です。これとは対照的に、植物中の刺激によって誘発される電気信号は、ほとんどの研究が注目されています。植物には神経や筋肉を持っていないが、植物中の刺激によって誘発される電気信号は、環境因子への応答に重要な役割を果たしていることを前提とするのに十分な証拠があるように思われます。
師部、植物の血管系の生体成分は、主要なサブように仮定されています刺激によって誘発される電気信号を伝送するためのstrateは、刺激から/非刺激/非損傷領域2に損傷を受けました。師部の主な細胞は、篩エレメント(SES)、比較的単純な、細長い細胞です。のSEの端部は、植物全体に広がっている連続的な、低抵抗、篩管系を形成する、他のSEに接続されています。これらの高度に特殊化した細胞の電気的特性に非常に少数の研究は、しかし、があります。これらの以前の研究では、研究者は、ガラス微小電極3またはstylectomy(切断)4の後に、アブラムシの植物挿入スタイレットに結合させたガラス電極とのいずれかでのSEにアクセスしました。ガラス微小電極は、直径1μm未満の微細な先端に熱と一端で引っ張り、その後、KCl溶液で満たされたガラス毛細管から作製されます。のKCl充填ガラス電極に挿入されたAg / AgClの又は白金線、次にアンプの入力に接続されており、参照先電極は、回路を完成する、目的の細胞を囲む浴中に挿入されます。このセットアップでは、細胞外の参照先電極および細胞内測定電極、 すなわち、セル5の膜電位との電位差を記録します。この方法では、Umrathは藻類フラスコモ 6,7を用いて、植物細胞からの第1の細胞内記録を作った。 フラスコモは、比較的単純な大きな細胞と生物、および細胞内電気生理学実験することが適しています。対照的に、多細胞、三次元陸生植物の細胞への細胞内小ガラス電極の挿入は、技術的に要求が厳しい、高度に熟練した研究者だけでなく、高度な可視化、マイクロマニピュレーション、および防振装置を必要とします。ガラス電極は、根の表皮細胞8などの植物における表層細胞から記録するのに適しているが、細胞内recordinこのようなSEが、結果を混乱可能性が高い原因の損傷によって誘発される応答として深く植物の組織に埋め込まれた細胞からGS、。 1989年に、フロムとEschrichガラス電極をstylectomy 4後アブラムシのスタイレットに結合されている「アブラムシ法」と呼ばれる別の方法を使用することを、報告しました。ガラス電極がそうであるように柔軟なスタイレットは、組織または細胞の損傷を引き起こすことはありませんので、アブラムシの方法は、低侵襲性です。アブラムシのスタイレットは、植物の浸透のため、自然の偉大な発明であり、アブラムシがかなりのSEを見つけることで、人間よりも熟練しています。残念ながら、このアブラムシ方法は、技術的な専門知識と設備の面で非常に厳しいです。 stylectomy時、安定SEに挿入スタイレットと - また、この技術を実装し、各実験の成功は、給電モードであるアブラムシに完全に依存します。遡及的に考えて、一つは、この技術の成功の確率は私だったかもしれないことがわかります実験にstylectomyを適用する場合アブラムシスタイレットがSEであるか否かを識別することができる機器を追加することによってmproved。
1964年に、マクリーンとキンゼイはリアルタイム9,10にアブラムシの摂食行動の研究のための「電子監視システム」を記載しました。このシステムでは、アブラムシ及びスタイレット-浸透プラントは、電気回路に集積されました。その後、1978年に、Tjallingiiは、システムの修正版を考案した「電気浸透グラフ」(EPG)システム11,12と呼ばれます。オリジナルの電子監視システムは、EPGシステムと、起電力(EMF)が電位を発し、抵抗のみ由来の電位に対して感受性であった、すなわち、植物または昆虫で生成から生じる電位に加えて記録することができたのに対し昆虫の抵抗(R)。両方の信号成分、起電力及びRので、これは重要な改善を示し、アブラムシによる植物への浸透中にイベントの生物学的な関連情報を提供。何R-コンポーネントへのEPGプリアンプが敏感になることは、植物/アブラムシ抵抗の平均値の近くに位置しています1GΩ、その比較的低い入力抵抗です。小さ なオフセット電圧( 図1には 、V)は、約+100 mVのでは、1つの側に、植物と昆虫に分割されている植物、および他の入力抵抗に印加されます。電圧及びその変化は、昆虫および入力抵抗との間の点( 図1A、B)で測定されます。 EMF-成分が昆虫に起因する植物スタイレット先端の電位と電位の一定の割合であるのに対し、このため、R-コンポーネントは、オフセット電圧の植物アブラムシ抵抗変調を表します。ここで最も関連性 - - 植物の電位は、アブラムシのスタイレットを穿刺植物細胞の主に膜電位です。昆虫電位が主であると思われます2スタイレット運河内の流体の動きによって引き起こされるストリーミング電位、 すなわち、食品や唾液運河。は内部の神経や筋肉の電位は、EPGに記録されていません。実際には、電極先端としてスタイレット先端機能します。すべての植物細胞は負電池の正外側に対して内側に充電されます。電流( すなわち、水溶液中の荷電イオンの移動)内側から外側に流れ、 その逆が原因細胞膜の高抵抗に非常に限られています。通常、静止電位が一定に保たれます。しかし、マイナスイオンが出て移動したり、正イオンが細胞膜を通って移動し、膜電位が低下すると、 すなわち、それは「脱分極します」。脱分極は、セルの励起の場合に発生します。イオンは、膜中の特定のイオンチャネルが開いているか、膜が損傷した場合やイオンが内外に漏れるときにアウトに移動したり。すべての細胞は、T中のイオンチャネルおよびポンプを持っています彼は細胞内の種々のイオンの最初の濃度を復元することによってその静止レベルに膜電位を持った膜をプラズマ。静止電位とその変化が起電力成分であり、従って、EPGの技術は、それらを測定するのに適しています。
1. EPG電極図 。 EPG電極は、その安定したスタイレット給電モードで篩エレメント(SE)に挿入された電気浸透グラフ(EPG)回路に組み込ま生きアブラムシあります。スタイレット-刺しSEが残り(パネルA)である場合には、EPGによって記録された回路の電圧は、安定しており、静止電位レベル(パネルC、REST)です。 SEが励起される場合、電圧が徐々に増加する(パネルC、脱分極)のように、EPGで可視化され、その膜の脱分極(パネルB)、。 SE中のイオンバランスを休まに戻るように、 すなわち、それrepolar化し、EPGにより記録された電圧は徐々に静止電位レベル(パネルC、再分極)に減少します。パネルCは、「A」及び「B」は、それぞれパネルAおよびBに示されたシナリオを参照します。 V =可変オフセット電圧源。 riは=入力抵抗。 1GΩ外付け抵抗と並行して、アンプが(灰色で、パネルAおよびB)高1.5TΩ抵抗(オペアンプ)で内部があります。スイッチのリモコンでのEPGプリアンプは、高精度の電圧値を得ることができ、モードをEMFために、通常から変更することができます。 この図の拡大版を表示するには、こちらをクリックしてください。
次のセクションでは、両方の集束昆虫や植物に焦点を当てた研究のために有効であるEPG実験を行うための基本的なプロトコルを読者に提供します。
1.アブラムシ飼育
注:EPGの録音のための植物とアブラムシ種の選択は、研究目的に応じて異なります。 シロイヌナズナの研究のために、アブラムシBrevicoryneのアブラナ科が適切です。
EPG録画用2昆虫の配線
tp_upload / 52826 / 52826fig2.jpg "/>
図2。電気浸透グラフ(EPG)記録のためのアブラムシや他の半翅目昆虫でEPG電極を作る。 この図の拡大版を表示するには、こちらをクリックしてください。
パネルは、AI、必要な手順は、EPG電極マイナスアブラムシを作製しました。まず、はんだ付けボルト(A)の先端にハンダ付け金属片を溶かします。そして、はんだ付け流体(B)のドロップに真鍮ピンの頭を浸し、はんだ付けボルトチップ(C)で溶融金属とそれをご連絡ください。すぐにこのステップの後、真鍮ピン(EF)の頭部にそれを接着するために、はんだ付けボルトの先端に銅ワイヤの端部に連絡してください。メスまたは刃で、金ワイヤ(G)の一部をカット。ディップ銅線の自由端銀が枯渇する前に、(I)を銀接着剤(H)の(真鍮ピンにもう一方の端で結合)、そしてすぐにそれに金ワイヤに参加します。金ワイヤは、優れた導体であり、かつ偏光することができます。実際には、ほとんどの場合、偏光を検出するには小さすぎる、そしてもしそうなら、それは、オフセット電圧(V)を用いて補償することができます。
パネルJO、電極にアブラムシ(または他の半翅目昆虫)を接続するために必要な手順。まず、慎重に微細な水彩ブラシでアブラムシを持ち上げて、真空吸引装置(J)の開口部の上に置きます。真空ポンプの電源を入れ、吸引を適用するために一枚の紙とエアーバルブの穴をカバーしています。銀接着剤(K)に虫ピンの先端を浸して、実体顕微鏡(LM)の下で、アブラムシの腹部の上に小さな接着剤滴を置きます。以内次〜20秒は、アブラムシが乾燥上の銀接着剤滴前に、銀接着剤の湿潤液滴に昆虫電極の金ワイヤの端部を挿入し、銀接着剤が有するようになるまで、1〜3分間の場所に保管してください完全に空気乾燥した(N)。この時点で、吸引装置から、吸引装置の空気弁孔を覆い、慎重にアブラムシを除去枚の紙を除去することにより、吸引を無効にします。配線後にアブラムシを持ち上げることは、多くの場合、微細なブラシ(O)によっていくつかの助けを必要とします。
パネルPは、全体EPGの概要は、ファラデーケージの内部設定を示しており、パネルQは、EPGのための植物アブラムシの組み合わせの概要を示します。このプロセスのより詳細な説明については、上記のセクション2を参照してください。
:小さな文字は1つが、EPG電極を作るために必要な項目を参照ラベルであるはんだ付けボルトと、b:はんだ付け金属を溶融させ、C:はんだ液; D:真鍮コネクタピン(爪); E:銅線、F:Øの18μmの金ワイヤ; G:吸引装置; H:アブラムシ; I:水ベースの銀接着剤; J:ファラデーケージ; kは :植物電極; L:EPGプリアンプの入力コネクタ(BNC)。
以前の研究では、キャタピラ攻撃1の間にmidveinのSEの中で生成された電気信号を特徴付ける目的で、EPG電極技術を実装しました。 midveinは、これらの技術を実施するために必要な固定に適し、したがって、それはSE-緻密であるため、従来のガラス電極用、並びにガラス、スタイレットの電極のための好ましい挿入部位であり、比較的堅牢。ここでは、特に、葉の辺縁静脈のものとのSEにアクセスすることはより困難から電気生理学的情報を収集する目的で、EPG電極の多様性を利用した。 図3は、典型的なEPGが限界静脈にSEからの記録を示してA.の遠位創傷により誘導された電気信号が含まれているシロイヌナズナ植物。異なる主要な静脈内のSEから、限界静脈のSEがに対応することができる単一の、遅い脱分極波を使用してリモートの損傷に応答しました中央のSEが遅い脱分極波。平均して、葉のマージンのSEの中で、この遠隔誘導さ遅い脱分極は61±27秒の平均継続時間、および37±2 mVでの平均振幅を有していた(n = 3、平均±SEM)。 EPG電極と容易に得られるこれらのデータは、無傷の葉で傷誘導性の電気信号はマイナー静脈の師部に主要な維管束から広がるんことを示唆しています。
ここでは、また、SEは数分程度の時間間隔内に配信、様々な損傷を与える刺激に応答できるかどうかを調査するために、EPG電極の堅牢性を悪用しました。 2枚の葉は葉柄ラミナ接合部ではさみで切断した場合には、無傷の葉の中に入れEPG-電極は、これらの創傷( 図4A)に同じSEから同様の応答を検出しました。別の実験では、キャタピラが創傷剤として使用しました。毛虫は、最初の非隣接の葉をカットし、その後、数分後には、Tを移動しましたOA近隣の葉と同様にそれをカット。だけ遅い過渡脱分極、一貫して、以前の実験1で、低速および高速の脱分極が含まれている完全な電気信号を誘導し、隣接の葉における第二の創傷を誘導した非隣接葉の最初の傷一方。これらのデータは、ふるい要素が互いに数分以内に配信他のリーフに与えた複数の創傷事象を検出することができることを示します。
図3。EPG電極と限界静脈のふるい要素(SES)からの損傷誘発性電気信号の細胞内記録。アブラムシBrevicoryneアブラナ科の師部給電位相の電気浸透グラフ(EPG)信号セグメント。 EPG-記録アブラムシは葉#8( シロイヌナズナの辺縁静脈に位置するSEから供給されました左側の漫画に示すように、野生型)、。 EPG信号はまもなく近位隣接リーフ(葉#3)を切断した後、限界SEが遅い脱分極波を示しています。リズミカルな、小さな、下方高速信号成分は摂取相(波形E2)中にスタイレットの食品運河沿いの樹液のリズミカル昇天から生じるストリーミング電位を表す。 この図の拡大版を表示するには、こちらをクリックしてください。
図4. EPG電極を用いて取得ふるい要素(SES)での創傷の刺激に複数の電気的応答アブラムシ植物の丈夫さ。(Brevicoryneアブラナ科 - シロイヌナズナ )の相互作用およびSE-挿入アブラムシスタイレットの安定性は重要な特性でありますEPG-ELE長いEPG録画(時間)の取得を可能にするctrodes。ここでは、SEは、2つのリモート創傷の刺激に応答できるかどうかを調査するために、これらの特性を利用しました。パネルAは、連続的に二つの異なる隣人が葉に与え2人工創傷イベント(はさみによる葉の切断)にSEの応答を示します。 2の刺激の間に約17分の間隔があります。パネルBは、2つの連続した自然な創傷イベントにSEの応答を示します。モンシロチョウ( オオモンシロチョウ )の第 4齢毛虫は、この実験で使用しました。毛虫は、まず遅い、一過性脱分極を誘導する、(EPG記録葉との関係で)非隣接葉をカット。その後、約7分後、毛虫が二重脱分極信号をトリガーし、別の隣人の葉を、カット( すなわち、低速と高速過渡脱分極を含む)アブラムシ-記録SEに。矢印は傷時間を示します負わせた。 この図の拡大版を表示するには、こちらをクリックしてください。
この記事では、電気浸透グラフ(EPG)の記録を作成するための詳細なプロトコルを提供します。 EPG技術はよく、世界中の100〜200のアクティブユーザーと、確立され、それは、例えば、さまざまなトピックに関する多くの研究のために実装されました:アブラムシや他のスタイレット保有昆虫13 a)の宿主植物の抵抗性を、 B)植物ウイルスおよび病原体伝達機構14と 、アクションのC)殺虫モード、(毒性や行動の変化)15; D)のEPGも、それはその給電効率16を上昇させるようにアブラムシの戦いは勝者のために有利で あることを実証するのに有用でした。
EPGの記録のために昆虫を配線する学ぶことは難しいことではありませんが、マスターに忍耐と実践的な経験が必要です。最終有線昆虫に電極を作ることから、1〜2週間の練習期間が推奨されます。この間、研究者は、選択されたの取り扱いに/自分を自分自身を理解します昆虫種、正常にすべてのステップを続行します。重要なステップは以下のとおりです。完全に正しいサイズの接着剤滴をとる前に、銀接着剤バイアルを振って、適切に半田付け - 小さすぎず大きすぎても - 適切な電気的および機械的な接続を確保し、昆虫の腹部上に銀滴内の金ワイヤを配置します昆虫の動きを拘束しませんようにして。正しくこれらの手順を実行しないと、悪いまたは許容できない品質のデータになります貧しい電気的接続、になります。植物への有線昆虫アクセスを与える場合には、視覚的に記録の最初の半分の時間の間にそれらを監視することが重要です。この期間中、アブラムシは、ワイヤに慣れになっている、と離れて所望の記録場所から徒歩、または植物から脱落することができます。したがって、人はこの期間中にアブラムシを再配置するために必要がある場合があります。行動の目的の場合には、何の再配置は、最初の時間後に行われるべきではありません複製の間に大きな差を防止するために、時間をALF。不十分に配置またはドロップオフの個体は破棄されるべきです。
EPG録画するためのプロトコルを提供することに加えて、この記事では、植物細胞内の電気生理学( 図1)内のメソッドとしての用途に関連するEPG回路の特徴を再現します。 EPG電極の主な特徴は、SEのから正確な細胞内記録を可能にする高度に細胞特異的な電極であるということです。正規EPG増幅器では、入力抵抗は、比較的低い1GΩ(10 9Ω)。実際には、これは記録時の抵抗の変化を測定可能性に影響を与えることを意味します。これは、典型的には、より高い入力抵抗増幅器を使用し、ガラス電極、を備えた従来の細胞内電気生理学の問題ではありません。一つはcalibrを使用して原形質膜に起因する抵抗の変化のため、および他のソースから修正することができサルバドール-Recatalà らのようにエーションパルス、。1。別のオプションは、1GΩから1.5TΩ(1.5×10 12Ω)に、さらには入力抵抗に相当する1PΩ(10 15Ω、プリアンプのオペアンプに応じて)に、定期的なEPGのプリアンプの入力抵抗を増大させることです細胞内記録のための定期的なアンプで。高い入力抵抗とEPGアンプは「EMFモードEPG」システムと、ここで呼ばれています。このアンプでは、スイッチは、ノーマルモードEPG増幅器を無効に( 図1参照します)。 EMFモードでは、EPG電極法は、正確な細胞内の電気生理学的に使用される正規のアンプなどの植物細胞の電位を記録します。 EMFモードでEPGに残された唯一の障害は、SE送り時のアブラムシの起電力成分から発生するが、これらはかなり低く、測定の精度が損なわれることはありません。研究者は、同時記録することを望む場合環境ストレス因子に対するアブラムシの反応は(例えば、唾液分泌、経口摂取の変化)とSEの膜電位の情報は、その後、EPGのノーマルモードを推奨します。その場合には、キャリブレーションパルスを印加すると、膜電位の許容可能な近似値を提供します。
in vivoでの師部血管系の電気的応答を取得するための適切な方法がないことは、現在、植物の環境ストレス応答に関連する質問の種類と数を制限しています。研究者はmidveinでのSEで細胞内記録を取得するためのガラス電極3とガラススタイレット電極4を実装しています。電極のこれら2つのタイプとは対照的に、EPG電極は、(ルートアブラムシを用いて、さらに根に)植物の実質的に任意の地上部に配置することができます。従って、EPG電極は、植物電気生理学でより包括的な研究を促進します。 Anot従来の電極上のEPG電極の彼女の利点は、前者は、種々の刺激に対する単一のSEの応答を調査することが可能になり、拡張記録期間、を可能にすることです。これは重要な生物物理学的な機能であり、SESが異なる環境刺激からの情報を統合する方法についての興味深い情報を提供することができます。実際、ここに示したデータは、SESがのSEのこの重要な生物物理学的機能のさらなる研究を正当化する、様々な損傷を与える刺激( 図4)に反応しないことを証明しています。
のSEの電気生理学的研究の数は、EPG電極と従来のガラス電極を用いて得られたデータを用いて取得されたデータとの比較を行うには小さすぎます。実際には、我々の知識にガラス電極またはガラススタイレット電極である、伝統的な方法で取得したシロイヌナズナのSEの中の刺激によって誘発される電気信号、上の文献にデータが存在しません。使用するガラス電極、ロードスと共同研究者3は、熱がトマト植物のSEの中で活動電位のようなスパイクを誘導することを見出しました。彼らが示した高速脱分極が小さく、遅い脱分極の上に発生した、約70 mVでの大きさを持っていました。注意は、2つの異なる植物種からの電気信号を比較する場合採取し、刺激の異なる種類によって誘導されるべきであるが、これは、EPG電極1により取得された我々の電気信号と一致しています。
EPG電極は、刺激の様々な種類の師部細胞の電気生理学的応答を研究するための汎用性とエレガントなツールです。
WFT launched EPG Systems as a retirement activity, and is affiliated with it financially.
VSRは、IIFマリー·キュリー·グラント(: シロイヌナズナで電気信号を誘導した創傷EARTHにおける創傷の略)によってサポートされていました。
Name | Company | Catalog Number | Comments |
Brass connector pins | EPG Systems/hardw.shop | Φ 1.2 mm | |
Thin copper wire | EPG Systems/hardw.shop | approx. Φ 0.2 mm | |
Thin gold wire | EPG Systems | Φ 18 µm | |
Soldering fluid | hardware shop | matching the soldering wire | |
Resin-cored soldering wire | hardware shop | ||
Styrofoam | any | ||
Water-based silver glue | EPG Systems | recipe in: www.epgsystems.eu | |
Paper wipes | Kimberly-Clark | 5511 | |
Soldering bolt | any | ||
Stereomicroscope | Hund Wetzlar | minimum magnification is 10X | |
Small scissors | Fine Science Tools | 14088-10 | |
Scalpel | Fine Science Tools | 10050-00 | |
Fine forceps | Fine Science Tools | 11231-20 | |
Vortex | A. Hartenstein | L46 | |
Watercolor brushes | any | Number 1 or 2 | |
Air suction device | see description in: www.epgsystems.eu | ||
Insect pins | any | No. 1 or 2 | |
Solid table | |||
Faraday cage | Hand made | ||
Computer | Fujitsu Siemens | ||
Data acquisition software | EPG Systems | Stylet+d | |
Giga-4 (-8) Complete System | EPG Systems | ||
includes the following: | |||
Main control box with USB output | Di155/Di710 | 12/14 bit, rate 100 Hz (softw. fixed) | |
EPG probes 4 (8) | 50x DC pre-amplifier | ||
Swivel clamps on rod | |||
DC power adaptor | bipolar, 230/115 VAC to -/+8 VDC | ||
Plant electrodes and cables | |||
Additional test and ground cables |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved