サインイン

Mechanically-gated ion channels are proteins found in eukaryotic and prokaryotic cell membranes that open in response to mechanical stress. Tension, compression, swelling, and shear stress can alter the conformation of the protein, opening a transmembrane channel that allows the passage of ions for signal transmission. In eukaryotes, mechanically-gated channels are distributed in several regions like the neurons, lungs, skin, bladder, and heart, where they play critical roles in numerous physiological and pathophysiological processes.

In 2021 the Nobel Prize in Physiology or Medicine was awarded to David Julius and Ardem Patapoutian for their discovery and advancement of the knowledge of mechanically-gated ion channels, TRP, and Piezo channels.

David Julius discovered the presence of transient receptor potential (TRP) channels are expressed in many cell types and tissues. Some members of this large family of proteins act like thermometers involved in hot and cold sensations. Like the TRPV1, it gets activated by several factors such as temperature higher than 43 ℃, allyl isothiocyanate found in wasabi and mustard, and capsaicin, the hot component of peppers. So when we eat something spicy, the intense heat generated causes sweating. This is because the channel gets activated by capsaicin, allowing sodium and calcium ions to flow through it into the cell. This triggers electrical activity that sends messages of spice sensation and pain to the brain.

Ardem Patapoutian worked on the Piezo channels, the novel class of mechanosensitive ion channels. He discovered that these channels are required for the perception of touch and proprioception. Abnormalities in the functioning of these channels can cause muscular and neuronal degeneration, cardiac myopathies, hypertension, and cancer. In certain cancers, the upregulation of Piezo channels allows calcium ions influx, thereby modulating key calcium-dependent signaling pathways associated with cancer progression.

タグ

Mechanically gated Ion ChannelsEukaryoticProkaryoticCell MembranesMechanical StressTensionCompressionSwellingShear StressConformational ChangeSignal TransmissionNeuronsLungsSkinBladderHeartPhysiological ProcessesPathophysiological ProcessesNobel PrizeDavid JuliusArdem PatapoutianTransient Receptor Potential TRP ChannelsThermometersTemperatureWasabiMustardCapsaicinSpicy SensationPainPiezo ChannelsMechanosensitive Ion ChannelsTouchProprioceptionMuscular DegenerationNeuronal DegenerationCardiac MyopathiesHypertensionCancerCalcium Signaling

章から 14:

article

Now Playing

14.5 : Mechanically-gated Ion Channels

チャネルと膜の電気的特性

6.1K 閲覧数

article

14.1 : アクアポリン

チャネルと膜の電気的特性

4.7K 閲覧数

article

14.2 : ノンゲートイオンチャネル

チャネルと膜の電気的特性

6.6K 閲覧数

article

14.3 : リガンド依存性イオンチャネル

チャネルと膜の電気的特性

12.0K 閲覧数

article

14.4 : 電位依存性イオンチャネル

チャネルと膜の電気的特性

7.7K 閲覧数

article

14.6 : ニューロンの構造

チャネルと膜の電気的特性

12.4K 閲覧数

article

14.7 : 安静時膜電位

チャネルと膜の電気的特性

17.4K 閲覧数

article

14.8 : 静止電位減衰

チャネルと膜の電気的特性

4.8K 閲覧数

article

14.9 : アクションポテンシャル

チャネルと膜の電気的特性

7.5K 閲覧数

article

14.10 : チャネルロドプシン

チャネルと膜の電気的特性

2.5K 閲覧数

article

14.11 : パッチクランプ

チャネルと膜の電気的特性

5.2K 閲覧数

article

14.12 : 電気シナプス

チャネルと膜の電気的特性

8.1K 閲覧数

article

14.13 : 化学シナプス

チャネルと膜の電気的特性

8.5K 閲覧数

article

14.14 : 神経伝達物質の興奮性および抑制性効果

チャネルと膜の電気的特性

9.5K 閲覧数

article

14.15 : 筋肉の収縮

チャネルと膜の電気的特性

6.1K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved