Accedi

Consider a plane wavefront traveling in position x-direction with a constant speed. This wavefront can be utilized to obtain the relationship between electric and magnetic fields with the help of Faraday's law.

Equation1

Figure1

To apply Faraday's law, consider a rectangle of width a, as shown in the figure.1, whose area vector is in the positive z-direction. To solve the left-hand side integral in Faraday's law, integrate counterclockwise along the rectangle. The electric field is zero along one of the lengths lying outside the wavefront, while the electric field is perpendicular to the other two length elements. These three sides give no contribution to the integral. Only along one side, the electric field has a non-zero value, and it is parallel to the length. This side contributes to the integral, giving a non-zero value.

Equation2

Since the left side of Faraday's law is non-zero, to satisfy the equation there must be a magnetic field component in the positive z-direction, which can provide a non-zero magnetic flux through the rectangle and hence a non-zero time derivative of magnetic flux. To obtain this value, consider that in time dt, the wave moves a distance c dt. While moving, it sweeps an area equal to ac dt. During this time interval, the magnetic flux through the rectangle increases, giving the rate of change of magnetic flux. This value is substituted in Faraday's law, resulting in a relationship between E and B in terms of the speed of wave propagation in a vacuum.

Equation3

This expression shows that the wave is consistent with Faraday's law only if the wave speed and the magnitudes of the perpendicular vectors are related, as in the above equation.

Tags

Plane Electromagnetic WavesWavefrontElectric FieldsMagnetic FieldsFaraday s LawIntegralMagnetic FluxSpeed Of Wave PropagationRelationship E And BCounterclockwise IntegrationArea VectorTime Derivative Of Magnetic Flux

Dal capitolo 33:

article

Now Playing

33.6 : Plane Electromagnetic Waves II

Electromagnetic Waves

3.0K Visualizzazioni

article

33.1 : Onde elettromagnetiche

Electromagnetic Waves

8.3K Visualizzazioni

article

33.2 : Generazione di radiazioni elettromagnetiche

Electromagnetic Waves

2.3K Visualizzazioni

article

33.3 : Lo spettro elettromagnetico

Electromagnetic Waves

13.7K Visualizzazioni

article

33.4 : Equazione delle onde elettromagnetiche

Electromagnetic Waves

909 Visualizzazioni

article

33.5 : Onde elettromagnetiche piane I

Electromagnetic Waves

3.5K Visualizzazioni

article

33.7 : Velocità di propagazione delle onde elettromagnetiche

Electromagnetic Waves

3.3K Visualizzazioni

article

33.8 : Onde elettromagnetiche nella materia

Electromagnetic Waves

2.9K Visualizzazioni

article

33.9 : Energia trasportata dalle onde elettromagnetiche

Electromagnetic Waves

2.7K Visualizzazioni

article

33.10 : Intensità Delle Onde Elettromagnetiche

Electromagnetic Waves

4.3K Visualizzazioni

article

33.11 : Quantità di moto e pressione di radiazione

Electromagnetic Waves

1.8K Visualizzazioni

article

33.12 : Pressione di radiazione: risoluzione dei problemi

Electromagnetic Waves

264 Visualizzazioni

article

33.13 : Onde elettromagnetiche stazionarie

Electromagnetic Waves

1.4K Visualizzazioni

article

33.14 : Onde stazionarie in una cavità

Electromagnetic Waves

784 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati