JoVE Logo

Accedi

Adolf von Baeyer attempted to explain the instabilities of small and large cycloalkane rings using the concept of angle strain — the strain caused by the deviation of bond angles from the ideal 109.5° tetrahedral value for sp3 hybridized carbons. However, while cyclopropane and cyclobutane are strained, as expected from their highly compressed bond angles, cyclopentane is more strained than predicted, and cyclohexane is virtually strain-free. Hence, Baeyer’s theory that was based on the assumption that all cycloalkanes are flat was wrong, and, in reality, most cycloalkanes adopt a non-planar structure.

Cyclopropane, the three-carbon cyclic alkane, has the highest angle strain since its planar structure is highly compressed, deviating by 49.5° from the ideal value. Additionally, cyclopropane has a torsional strain due to the eclipsing interaction between six C-H bonds. Hence, cyclopropane has an overall ring strain of 116 kJ/mol. Unlike cyclopropane, which is planar, cyclobutane takes up a more stable, folded non-planar conformation. Folding causes the angle strain to be slightly elevated compared to the hypothetical planar cyclobutane, but the torsional strain from the ten eclipsing hydrogens is greatly relieved. Cyclobutane has an overall strain of 110 kJ/mol. Cyclopentane also adopts a non-planar conformation known as envelope conformation. Compared to the hypothetical planar form of cyclopentane, the envelope form has its bond angles slightly reduced, which marginally increases the angle strain. However, it significantly alleviates the torsional strain from ten eclipsing C-H bonds. Hence, the overall strain in cyclopentane is 27 kJ/mol.

Tags

CycloalkanesAngle StrainCyclopropaneCyclobutaneCyclopentaneCyclohexaneNon planar StructureRing StrainTorsional StrainConformations

Dal capitolo 3:

article

Now Playing

3.9 : Conformations of Cycloalkanes

Alcani e cicloalcani

11.4K Visualizzazioni

article

3.1 : Struttura degli alcani

Alcani e cicloalcani

26.5K Visualizzazioni

article

3.2 : Isomeri costituzionali degli alcani

Alcani e cicloalcani

17.4K Visualizzazioni

article

3.3 : Nomenclatura degli alcani

Alcani e cicloalcani

20.8K Visualizzazioni

article

3.4 : Proprietà fisiche degli alcani

Alcani e cicloalcani

10.6K Visualizzazioni

article

3.5 : Proiezioni di Newman

Alcani e cicloalcani

16.1K Visualizzazioni

article

3.6 : Conformazioni di etano e propano

Alcani e cicloalcani

13.5K Visualizzazioni

article

3.7 : Conformazioni del butano

Alcani e cicloalcani

13.6K Visualizzazioni

article

3.8 : Cicloalcani

Alcani e cicloalcani

11.8K Visualizzazioni

article

3.10 : Conformazioni del cicloesano

Alcani e cicloalcani

11.9K Visualizzazioni

article

3.11 : Conformazione a sedia del cicloesano

Alcani e cicloalcani

14.1K Visualizzazioni

article

3.12 : Stabilità dei cicloesani sostituiti

Alcani e cicloalcani

12.2K Visualizzazioni

article

3.13 : CIcloesani disostituiti: isomeria cis-trans

Alcani e cicloalcani

11.6K Visualizzazioni

article

3.14 : Energia di combustione: una misura di stabilità in alcani e cicloalcani

Alcani e cicloalcani

6.2K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati