Sign In

Angular momentum is directed perpendicular to the plane of the rotation, and its magnitude depends on the choice of the origin. The perpendicular vector joining the linear momentum vector of an object to the origin is called the “lever arm.” If the lever arm and linear momentum are collinear, then the magnitude of the angular momentum is zero. Therefore, in this case, the object rotates about the origin such that it lies on the rim of the circumference defined by the lever arm magnitude.

The net torque acting on rotating bodies causes the angular momentum to change, which is a rotational analog for Newton's second law of motion in terms of momentum. It is important to note that this is valid as long as both torque and angular momentum are measured to the same origin, fixed to an inertial frame of reference.

This text is adapted from Openstax, University Physics Volume 1, Section 11.2: Angular Momentum.

Tags

Angular MomentumLever ArmTorqueRotational MotionNewton s Second LawInertial Frame Of Reference

From Chapter 11:

article

Now Playing

11.8 : Angular Momentum: Single Particle

Dynamics of Rotational Motions

5.9K Views

article

11.1 : מומנט

Dynamics of Rotational Motions

13.0K Views

article

11.2 : חישובי מומנט נטו

Dynamics of Rotational Motions

8.8K Views

article

11.3 : משוואת הדינמיקה הסיבובית

Dynamics of Rotational Motions

6.2K Views

article

11.4 : מתגלגל מבלי להחליק

Dynamics of Rotational Motions

3.4K Views

article

11.5 : מתגלגל עם החלקה

Dynamics of Rotational Motions

4.5K Views

article

11.6 : עבודה וכוח לתנועה סיבובית

Dynamics of Rotational Motions

5.0K Views

article

11.7 : משפט עבודה-אנרגיה לתנועה סיבובית

Dynamics of Rotational Motions

5.6K Views

article

11.9 : תנע זוויתי: גוף קשיח

Dynamics of Rotational Motions

8.5K Views

article

11.10 : שימור התנע הזוויתי

Dynamics of Rotational Motions

9.9K Views

article

11.11 : שימור התנע הזוויתי: יישום

Dynamics of Rotational Motions

10.6K Views

article

11.12 : סיבוב של חלק עליון אסימטרי

Dynamics of Rotational Motions

778 Views

article

11.13 : גירוסקופ

Dynamics of Rotational Motions

2.8K Views

article

11.14 : ג'ירוסקופ: נקיפה

Dynamics of Rotational Motions

3.9K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved