Method Article
* Ces auteurs ont contribué à parts égales
Decellularized human skin is suitable for tissue regeneration. A major issue of decellularization is the preservation of the native architecture, along with the appropriate content of structural proteins, glycosaminoglycans (GAGs), and growth factors. The method proposed allows fast and effective decellularization, producing decellularized skin with well-preserved native features.
Extracellular matrix (ECM) provides biophysical and biochemical stimuli to support self-renewal, proliferation, survival, and differentiation of surrounding cells due to its content of diverse bioactive molecules. Due to these characteristics, the ECM has been recently considered a promising candidate for the creation of biological scaffolds to boost tissue regeneration. Emerging studies have demonstrated that decellularized human tissues could resemble the native ECM in their structural and biochemical profiles, preserving the three-dimensional (3D) architecture and the content of fundamental biological molecules. Hence, decellularized ECM can be employed to promote tissue remodeling, repair, and functional reconstruction of many organs. Selecting the appropriate decellularization procedure is crucial to obtain acellular tissues that retain the characteristics of the ideal microenvironment for cells.
The protocol described here provides a detailed step-by-step description of the decellularization method to obtain a reproducible and effective cell-free biological ECM. Skin fragments from patients undergoing plastic surgery were scaled down and decellularized using a combination of sodium dodecylsulfate (SDS), Triton X-100, and antibiotics. To promote the regular and homogeneous transport of the solution through the samples, they were enclosed in embedding cassettes to ensure protection from mechanical insults. After the decellularization procedure, the snow-white color of skin fragments indicated complete and successful decellularization. Additionally, decellularized samples showed an intact and well-preserved architecture. The results suggest that the proposed decellularization method was effective, fast, and reproducible and protected samples from architectural damages.
The ECM serves as a scaffold for cells, supporting them through an intricate architecture maintained by different components, and it is one of the major factors responsible for the mechanical properties of the heart and cardiac tissue function1,2. Increasing evidence suggests that ECM plays an active role in tissue remodeling, making the conventional assumption that the ECM is a passive component obsolete3,4,5,6. The role of the ECM is to provide biophysical and biochemical cues to resident cells. It is well-established that these signals can influence many fundamental cell behaviors, impacting their contractile function, proliferation, migration, and differentiation potential7,8,9. Thus, ECM is increasingly being employed in tissue engineering and regenerative medicine as a therapeutic support tool9,10,11,12,13.
The ECM consists of several proteins such as collagen, elastin, fibronectin, proteoglycan, and laminin, along with ECM-bound growth factors, all involved in regeneration mechanisms, such as cell recruitment, migration, and differentiation, as well as cell alignment and proliferation14. The mechanical properties of the tissues also have great relevance in the physiopathology of the organs. Indeed, changes in mechanical properties are often associated with the onset and the evolution of several diseases. The reason resides in the fact that when the ECM is modified, signals coming from the environment induce changes in gene and protein expression, leading to functional impairment15,16.
Regenerative therapies for organ repair are currently focused on replicating the sophisticated microenvironment of the native tissue to heal the organ where the body fails. Despite the rapid pace of many tissue engineering approaches, the tissues still cannot be reproduced accurately in their entirety and complexity by artificial procedures. Synthetic materials have been largely employed so far, as they can be appropriately tuned to simulate the mechanical and biochemical properties of the cellular microenvironment. Nevertheless, they have limits, such as the inability to mimic the numerous interactions within the native tissue, the cost of technologies to produce them, and the fact that they are less natural and biocompatible than native tissue17,18,19. Additionally, their composition, primarily in terms of proteins and soluble factors, greatly differs from the natural one, which is extremely difficult to replicate20.
The cutting-edge approach in regenerative medicine to reduce the gap between the patients in need and organ transplants is to produce scaffolds made of decellularized extracellular matrix (d-ECM) and repopulate them with the appropriate cell types to regenerate the damaged organs. Decellularization is the process in which the ECM is isolated from its native cells and genetic material to produce a natural and biomimetic scaffold, able to avoid the immune response and rejection once implanted in the patients21,22,23. The ECM thus obtained can then be repopulated to produce functional tissue. The major issue when developing a d-ECM is the method. For any decellularization technique, the primary goal remains the preservation of the native ECM composition, stiffness, and 3D structure, and all strategies have both benefits and drawbacks. Because the elimination of cellular content and DNA from the tissue requires the use of chemical or physical agents, or the combination of both, each decellularization procedure causes, to different degrees, the disruption of the ECM. Hence, it is crucial to minimize the damage to the ECM24,25,26.
Native ECM utilization as a platform for the reconstitution of native ECM in vitro is highly desirable. For this purpose, several decellularization protocols have been applied to a wide range of tissues27,28,29,30. In fact, since the early stages of decellularization research and ECM development, several tissues, such as arteries, aortic valves, and peripheral nerves from both animals and humans, have been decellularized, and some d-ECMs are still commercially available and used for tissue replacement or wound healing31,32,33. Recently, human skin has also emerged as a suitable candidate to produce decellularized scaffolds for cardiac repair owing to its composition and mechanical properties-able to boost the regenerative potential of cardiac progenitor cells (CPCs) and adapt to cardiac contractility34. This paper describes a simple and fast protocol to produce decellularized scaffolds from adult human skin, allowing the development of a d-ECM with well-preserved architecture.
The specimens from human tissue were collected according to the principles of the Declaration of Helsinki and observing University Hospital "Federico II" guidelines. All patients involved in this study provided written consent forms.
1. Preparation of solutions
2. Day 1 - start the decellularization procedure.
3. Preparation of skin samples
4. Day 2 - check the state of the skin samples.
5. Day 3 - a final wash of the samples
The aim of the protocol was to obtain a skin d-ECM sample from biological tissue, maintaining a well-organized 3D structure and well-preserved content of biological molecules (Figure 1). This method is primarily based on the constant stirring of the samples in a solution containing the combination of two detergents, Triton X-100 and SDS, thus preserving the biological and structural features typical of the native tissue and reducing the time of exposure during the decellularization process. Upon receipt, the samples were washed and prepared for the procedure, obtaining 3 cm x 2.5 cm clean skin fragments, free from hair or fat tissue (Figure 2 and Figure 3). The use of embedding cassettes allowed the minimization of tissue disruption (Figure 3), resulting in samples with a more intact architecture. The decellularized skin did not show signs of significant mechanical or chemical damage after macroscopic observation. The epidermis was detached during the decellularization procedure (Figure 4A,B), and the samples changed in color from beige, typical of the whole native tissue, to snow-white, indicating complete and successful decellularization (Figure 4C).
Figure 1: Protocol workflow. Please click here to view a larger version of this figure.
Figure 2: Representative images of the skin sample preparation upon receipt. (A) Incoming sample. (B, C) Macroscopic evaluation of the sample placed on dissecting board. (D-F) Removal of the fat tissue using large surgical scissors. Please click here to view a larger version of this figure.
Figure 3: Skin sample dissection and placement in embedding cassettes. (A) Hair removed by fine forceps. (B-E) Skin samples dissected using a scalpel to obtain 3 cm x 2.5 cm fragments to fit into the embedding cassettes. (F, G) Skin fragment placed in embedding cassette. Please click here to view a larger version of this figure.
Figure 4: Checking the state of the sample during decellularization. (A, B) Detachment of the epidermis from the dermis. (C) Sample color change indicating the occurrence of decellularization. Scale bars = 3 cm. Please click here to view a larger version of this figure.
Although the protocol described above has been optimized and improved compared to previously published protocols, it presents a few critical steps that need attention and precision. The formation of foam must be avoided during the preparation of the decellularizing solution to prevent incorrect dilution of the detergents. This could be addressed by gently pouring the solutions and making them flow along the inner side of the cylinder. Furthermore, care must be taken when manually removing fat tissue from the samples, as decellularization using detergents, such as Triton X-100 and SDS, does not eliminate fat, and lipidic remnants could negatively affect the effectiveness of the method. Another critical step is the removal of the epidermis from the samples. During the decellularization, the epidermis gradually detaches from the skin surface. In this phase, it is crucial to peel it away with forceps only when it is completely swept off, thus avoiding tearing or shredding it and causing the entrapment of debris within the samples.
This protocol focuses on reducing the impact of decellularization on the samples by two major strategies: the shortening of exposure time to the procedure by using two detergents in combination28,35,36 and the protection of the samples from mechanical insults by enclosing them in embedding cassettes37. Further, the procedure has yielded successful outcomes when applied to samples other than skin, such as human and porcine myocardium and blood vessels. The evaluation of the effectiveness of the protocol described here is primarily done by a macroscopic observation of the samples, which would show a remarkable change in color, from beige to snow-white. Certainly, some other aspects must be assessed to assess the quality of d-ECM, such as the removal of cellular debris and residual genetic material, the preservation of structural proteins and biomolecule content, and the retention of mechanical properties, as described elsewhere34,37,38. The removal of cellular debris and genetic material is crucial to reduce the immunogenicity of the construct. Hence, some criteria for assessing the efficacy of removing these components are well-established in the literature: the d-ECM must have not more than 50 ng of double-stranded DNA (dsDNA)39 per mg of ECM dry weight, and no nuclear material must be microscopically visible.
To meet these criteria, residual DNA content evaluation and staining with hematoxylin and eosin must be performed, as described by Di Meglio et al.38 to support the macroscopic data. Moreover, the evaluation of ECM preservation by detecting structural proteins, such as collagen, fibronectin, and laminin, together with glycosaminoglycans and growth factors, is also appropriate34. Finally, the mechanical properties of the d-ECM should match those of the native tissue40. Although the efficacy and feasibility of this procedure have been demonstrated to obtain desirable decellularized tissue, the method has some limitations. For example, it allows the decellularization of only a few samples at a time (4 for each beaker), leading to considerable wastage of solutions. On the one hand, the use of embedding cassettes helps protect and preserve the samples; on the other hand, it forces the operators to decellularize only samples of small sizes that fit into the cassettes. Another limitation is the possibility of microbial contamination of the d-ECM obtained. Although the procedure involves the addition of antibiotics, it is highly recommended to sterilize the d-ECM by UV prior to use. Finally, the incubations required throughout the entire procedure must be accurately calculated and organized to optimally manage the time.
This protocol was developed to address the drawbacks observed while testing other protocols in the laboratory. Existing protocols allow a varying degree of decellularization without guaranteeing adequate integrity of the tissue, thus involving a considerable loss of essential biological molecules and mechanical properties41. The preservation of the ECM structure and composition after the decellularization are fundamental aspects, as d-ECM may act as the scaffold, that once repopulated, will support cellular regenerative mechanisms within the organ. By optimizing the decellularization process, biological scaffolds derived from human skin may be utilized in regenerative medicine, helping to minimize the gap between donors and patients in need of organ transplants. In addition, advancements in recellularization methods and applications of human induced pluripotent stem cell-derived cells will improve the distribution of the proper cell types42,43 to enable the regeneration process44.
The authors have no conflicts of interest to disclose.
None
Name | Company | Catalog Number | Comments |
0.9% NaCl isotonic Physiological solution | Sigma-Aldrich | S8776 | 0.9% in water |
1 L beaker | VWR | 511-0318 | Clean and autoclave before use |
10 mL serological pipet | Falcon | 357551 | Sterile, polystyrene |
100 mm plates | Falcon | 351029 | Treated, sterile cell culture dish |
15 mL sterile tubes | Falcon | 352097 | Centrifuge sterile tubes, polypropylene |
1 L graduated cylinder | VWR | 612-1524 | Clean and autoclave before use |
2 L bottle | VWR | 215-1596 | Clean and autoclave before use |
25 mL serological pipet | Falcon | 357525 | Sterile, polystyrene |
2 L graduated cylinder | VWR | 612-3072 | Clean and autoclave before use |
500 mL beaker | VWR | 511-0317 | Clean and autoclave before use |
Amphotericin B | Sigma-Aldrich | Y0000005 | Powder |
Dissecting board | VWR | 100498-398 | Made of high-density polyethylene. |
Dissecting scalpel | VWR | 233-5526 | Sterile and disposable |
Embedding cassettes | Diapath | 070191 | External dimensions: 40x26x7 mm (WxDxH) |
Fine forceps | VWR | 232-1317 | Clean and autoclave before use |
Funnel | VWR | 221-1861 | Clean and autoclave before use |
Hexagonal weighing boats size M | Sigma-Aldrich | Z708585 | Hexagonal, polystyrene, 51 mm Bottom I.D., 64 mm Top I.D. |
Hexagonal weighing boats size S | Sigma-Aldrich | Z708577 | Hexagonal, polystyrene, 25 mm Bottom I.D., 38 mm Top I.D. |
Large surgical scissors | VWR | 233-1211 | Clean and autoclave before use |
Long forceps | VWR | 232-0096 | Clean and autoclave before use |
Penicillin and Streptomycin | Sigma-Aldrich | P4333-100ml | Stabilized, with 10.000 units penicillin and 10 mg streptomycin/mL, 0.1 μm filtered. Store at -20°C. The solution should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles Solution. |
Pipette gun | Eppendorf | 613-2795 | Eppendorf Easypet® 3 |
Plastic tray | VWR | BELAH162620000 | Corrosion-proof polypropylene plastic tray |
Potassium Chloride | Sigma-Aldrich | P9333 | Powder |
Potassium Phosphate Monobasic | Sigma-Aldrich | P5665 | Powder |
Sodium Chloride | Sigma-Aldrich | S7653 | Powder |
Sodium Dodecyl Sulfate | Sigma-Aldrich | 62862 | Powder |
Sodium Phosphate Dibasic | Sigma-Aldrich | 94046 | Powder |
Spatula | VWR | RSGA038.210 | Clean and autoclave before use |
Spoon | VWR | 231-1314 | Clean and autoclave before use |
Stir bar | VWR | 442-0362 | Clean and autoclave before use |
Stir bar retriever | VWR | 89026-262 | Molded in pure, FDA-approved PTFE |
Triton X-100 | Sigma-Aldrich | 9002-93-1 | Liquid |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon