Method Article
Ce protocole décrit la cohérence partielle de la transformation des ondelettes (pWTC) pour calculer le modèle décalé dans le temps de la synchronisation neuronale interpersonnelle (INS) afin de déduire la direction et le modèle temporel du flux d’informations au cours de l’interaction sociale. L’efficacité du pWTC dans l’élimination des confusions de l’autocorrélation du signal sur l’INS a été prouvée par deux expériences.
L’interaction sociale est d’une importance vitale pour les êtres humains. Alors que l’approche de l’hyperscan a été largement utilisée pour étudier la synchronisation neuronale interpersonnelle (INS) au cours des interactions sociales, la spectroscopie fonctionnelle dans le proche infrarouge (fNIRS) est l’une des techniques les plus populaires pour hyperscanner les interactions sociales naturalistes en raison de sa résolution spatiale relativement élevée, de sa localisation anatomique sonore et de sa tolérance exceptionnellement élevée aux artefacts de mouvement. Les études précédentes d’hyperscan basées sur fNIRS calculent généralement un INS décalé dans le temps en utilisant la cohérence de transformation d’ondelettes (WTC) pour décrire la direction et le modèle temporel du flux d’informations entre les individus. Cependant, les résultats de cette méthode pourraient être confondus par l’effet d’autocorrélation du signal fNIRS de chaque individu. Pour résoudre ce problème, une méthode appelée cohérence de transformation partielle des ondelettes (pWTC) a été introduite, qui visait à éliminer l’effet d’autocorrélation et à maintenir la haute résolution du spectre temporel du signal fNIRS. Dans cette étude, une expérience de simulation a d’abord été réalisée pour montrer l’efficacité du pWTC dans l’élimination de l’impact de l’autocorrélation sur l’INS. Ensuite, des conseils étape par étape ont été offerts sur le fonctionnement du pWTC basé sur l’ensemble de données fNIRS d’une expérience d’interaction sociale. De plus, une comparaison entre la méthode pWTC et la méthode WTC traditionnelle et celle entre la méthode pWTC et la méthode de causalité de Granger (GC) a été établie. Les résultats ont montré que le pWTC pouvait être utilisé pour déterminer la différence INS entre différentes conditions expérimentales et le modèle directionnel et temporel de l’INS entre les individus au cours des interactions sociales naturalistes. De plus, il offre une meilleure résolution temporelle et de fréquence que le WTC traditionnel et une meilleure flexibilité que la méthode GC. Ainsi, pWTC est un candidat solide pour déduire la direction et le modèle temporel du flux d’informations entre les individus au cours des interactions sociales naturalistes.
L’interaction sociale est d’une importance vitale pour les êtres humains 1,2. Pour comprendre le mécanisme neurocognitif à double cerveau de l’interaction sociale, l’approche de l’hyperscan a récemment été largement utilisée, montrant que les modèles de synchronisation neuronale interpersonnelle (INS) peuvent bien caractériser le processus d’interaction sociale 3,4,5,6,7,8,9,10,11,12 ,13,14. Parmi les études récentes, une découverte intéressante est que la différence de rôle des individus dans une dyade peut conduire à un modèle de décalage temporel de l’INS, c’est-à-dire que l’INS se produit lorsque l’activité cérébrale d’un individu est inférieure de quelques secondes à celle d’un autre individu, comme celle des auditeurs aux locuteurs 5,9, des leaders aux adeptes 4, des enseignants aux élèves8, des mères aux enfants13,15, et des femmes aux hommes dans un couple romantique6. Plus important encore, il existe une bonne correspondance entre l’intervalle de l’INS décalé dans le temps et celui des comportements d’interaction sociale, comme entre les enseignants qui posent des questions et les élèves qui répondent à8 ou entre les comportements parentaux des mères et les comportements de conformité des enfants15. Ainsi, l’INS décalé dans le temps peut refléter un flux d’informations directionnel d’un individu à un autre, comme le propose un modèle hiérarchique récent pour la communication verbale interpersonnelle16.
Auparavant, l’INS décalé dans le temps était principalement calculé sur le signal de spectroscopie proche infrarouge fonctionnelle (fNIRS) en raison de sa résolution spatiale relativement élevée, de sa localisation anatomique sonore et de sa tolérance exceptionnellement élevée aux artefacts de mouvement17 lors de l’étude des interactions sociales naturalistes. De plus, pour caractériser précisément la correspondance entre le décalage temporel neuronal et le décalage temporel comportemental lors de l’interaction sociale, il est essentiel d’obtenir la force INS pour chaque décalage temporel (par exemple, de l’absence de décalage temporel à un décalage temporel de 10 s). À cette fin, auparavant, la procédure de cohérence de transformation d’ondelettes (WTC) était largement appliquée après avoir déplacé le signal cérébral d’un individu vers l’avant ou vers l’arrière par rapport à celui d’un autre individu 5,6,18. Lors de l’utilisation de cette procédure WTC traditionnelle pour les signaux fNIRS, il existe un défi potentiel car l’INS observé en retard dans le temps peut être confondu par l’effet d’autocorrélation du signal fNIRS pour un individu 19,20,21. Par exemple, au cours d’un processus d’interaction sociale dyadique, le signal du participant A au point de temps t peut être synchronisé avec celui du participant B au même point de temps. Pendant ce temps, le signal du participant A au point de temps t peut être synchronisé avec celui du participant A à un point de temps ultérieur t + 1 en raison de l’effet d’autocorrélation. Par conséquent, un faux INS décalé dans le temps peut se produire entre le signal du participant A au point de temps t et celui du participant B au point de temps t + 1.
Mihanović et ses collègues22 ont d’abord introduit une méthode appelée cohérence partielle de transformation des ondelettes (pWTC), puis l’ont appliquée aux sciences de la mer23,24. Le but initial de cette méthode était de contrôler le bruit de confusion exogène lors de l’estimation de la cohérence de deux signaux. Ici, pour résoudre le problème d’autocorrélation dans les données d’hyperscan fNIRS, la méthode pWTC a été étendue pour calculer l’INS décalé dans le temps sur le signal fNIRS. Précisément, un INS retardé dans le temps (et un flux d’informations directionnel) du participant A au participant B peut être calculé à l’aide de l’équation ci-dessous (équation 1)23.
Ici, on suppose qu’il y a deux signaux, A et B, des participants A et B, respectivement. L’occurrence du signal B précède toujours celle du signal A avec un décalage temporel de n, où WTC (At, Bt+n) est le WTC traditionnel décalé dans le temps. WTC (At, At+n) est le WTC autocorrélé chez le participant A. WTC (At, Bt) est le WTC aligné dans le temps au point de temps t entre le participant A et B. * est l’opérateur conjugué complexe (Figure 1A).
Figure 1 : Vue d’ensemble de pWTC. (A) La logique du pWTC. Il y a deux signaux A et B, dans une dyade. L’occurrence de A suit toujours celle de B avec un décalage n. Une boîte grise est une fenêtre d’ondelettes à un certain point de temps t ou t + n. Sur la base de l’équation pWTC (représentée sur la figure), trois WTC doivent être calculés: le WTC décalé dans le temps de At + n et Bt; le WTC autocorrélé chez le participant A de At et At+n; et le WTC aligné dans le temps aux points de temps t, At et Bt. (B) Disposition des ensembles de sondes optode. CH11 a été placé au T3, et LE CH25 a été placé au T4 selon le système international 10-2027,28. Veuillez cliquer ici pour voir une version agrandie de cette figure.
Ce protocole a d’abord introduit une expérience de simulation pour démontrer dans quelle mesure le pWTC résout le défi de l’autocorrélation. Ensuite, il a expliqué comment mener le pWTC de manière étape par étape basée sur une expérience empirique d’interactions sociales naturalistes. Ici, un contexte de communication a été utilisé pour introduire la méthode. En effet, auparavant, l’INS décalé dans le temps était généralement calculé dans un contexte de communication naturaliste 3,4,6,8,13,15,18. De plus, une comparaison entre le pWTC et le WTC traditionnel et une validation avec le test de causalité de Granger (GC) ont également été effectuées.
Le protocole d’expérimentation humaine a été approuvé par le comité d’examen institutionnel et le comité d’éthique du Laboratoire clé d’État des neurosciences cognitives et de l’apprentissage de l’Université normale de Beijing. Tous les participants ont donné leur consentement éclairé écrit avant le début de l’expérience.
1. L’expérience de simulation
2. L’expérience empirique
Résultats de la simulation
Les résultats ont montré que leWTC INS avec autocorrélation retardé dans le temps était significativement plus élevé que leWTC INS retardé dans le temps sans autocorrélation (t(1998) = 4,696, p < 0,001) et l’INSpWTC décalé dans le temps (t(1998) = 5,098, p < 0,001). De plus, il n’y avait pas de différence significative entre l’INSWTC sans autocorrélation décalé dans le temps et l’INSpWTC (t(1998) = 1,573, p = 0,114, figure 2A). Ces résultats indiquent que le pWTC peut effectivement éliminer l’impact de l’effet d’autocorrélation sur l’INS. De plus, lorsque la valeur du WTC a été fixée à 0 ou 1, lepWTC de l’INS retardé dans le temps a toujours montré des résultats fiables lorsque la valeur du WTC était éloignée de 0 ou 1 (figure supplémentaire 2).
Résultats d’expériences empiriques
Modèle INS utilisant la méthode WTC traditionnelle
Les résultats ont montré qu’à 0,04-0,09 Hz, l’INSWTCdans le cortex sensorimoteur (SMC, CH20) des femmes et des hommes était significativement plus élevé dans le sujet de soutien que dans le sujet de conflit lorsque l’activité cérébrale des hommes était inférieure à celle des femmes de 2 s, 4 s et 6 s (2 s: t (21) = 3,551, p = 0,0019; décalage 4 s: t(21) = 3,837, p = 0,0009; décalage 6 s: t(21) = 3,725, p = 0,0013). De plus, à 0,4-0,6 Hz, l’INSWTC dans le SMC était significativement plus élevé dans le sujet de conflit que dans le sujet de soutien lorsque l’activité cérébrale des hommes accusait un retard de 4 s par rapport à celle des femmes (t(21) = 2,828, p = 0,01, figure 2B).
De plus, pour comparer la direction de l’INSWTC dans différents sujets, un sujet (soutien, conflit) x direction (femmes à hommes, hommes à femmes) ANOVA a d’abord été mené sur INSWTC du SMC avec un décalage de 2 à 6 s. Les résultats de 0,04-0,09 Hz n’ont montré aucun effet d’interaction significatif à aucun décalage temporel (ps > 0,05). Pour la gamme de fréquences 0,4-0,6 Hz, les résultats ont montré que l’effet d’interaction était marginalement significatif (F(1, 21) = 3,23, p = 0,086). Les comparaisons par paires ont montré que leWTC de l’INS des femmes aux hommes était significativement plus élevé dans le sujet du conflit que dans le sujet de soutien (M.D. = 0,014, S.E. = 0,005, p = 0,015), tandis que l’INSWTC des hommes aux femmes ne différait pas significativement entre les sujets (M.D. = 0,002, S.E. = 0,006, p = 0,695).
Enfin, pour tester l’impact de l’autocorrélation sur les résultats de l’INSWTC traditionnel décalé dans le temps, l’INSWTC a été comparé entre WTC(Wt, Mt+4) et WTC(Mt, Mt+4) à 0,04-0,09 Hz et 0,4-0,6 Hz, respectivement. Notez que l’INSWTC de WTC(Mt, Mt+4) reflète l’autocorrélation. Les résultats ont montré qu’aux 0,4-0,6 Hz, il n’y avait pas de différence significative entre l’INSWTC de WTC(Wt, Mt+4) et celui de WTC(Mt, Mt+4) (t(21) = 0,336, p = 0,740). À 0,04-0,09 Hz, leWTC INS du WTC (Mt, Mt +4) était significativement plus élevé que celui du WTC (Wt, Mt + 4) (t (21) = 4,064, p < 0,001). Une comparaison a également été effectuée entre les gammes de fréquences de 0,04-0,09 Hz et 0,4-0,6 Hz en ce qui concerne l’INSWTC du WTC(Mt, Mt+4).. Les résultats ont montré que leWTC INS du WTC(Mt, Mt+4) était significativement plus élevé à 0,04-0,09 Hz qu’à 0,4-0,6 Hz (t(21) = 5,421, p < 0,001). Ces résultats indiquent que leWTC INS décalé dans le temps a été affecté par l’autocorrélation dans les gammes de basses et de hautes fréquences, mais l’impact a été plus important pour la gamme de fréquences inférieures que pour la gamme de fréquences plus élevées.
Modèle INS utilisant la méthode pWTC
Les résultats ont montré que la différence dans inspWTC entre le conflit et les sujets de soutien a atteint une signification au SMC des femmes et des hommes à 0,4-0,6 Hz lorsque l’activité cérébrale masculine a pris du retard de 4 s par rapport à celle des femmes (t (21) = 4,224, p = 0,0003). À 0,04-0,09 Hz; toutefois, aucun résultat significatif n’a été trouvé, pas plus que leurs résultats efficaces dans d’autres gammes de fréquences (Ps > 0,05, figure 2C).
Un test ANOVA supplémentaire a été effectué sur l’INSpWTC du SMC à 0,4-0,6 Hz. Les résultats ont montré que l’interaction entre le sujet et la direction était marginalement significative (F(1,21) = 3,48, p = 0,076). D’autres comparaisons par paires ont montré que letMC de l’INS des femmes aux hommes était significativement plus élevé dans le sujet du conflit que dans le sujet de soutien (M.D. = 0,016, S.E. = 0,004, p = 0,002), tandis que lepWTC inS des hommes aux femmes ne différait pas significativement entre les sujets (M.D. = 0,0007, S.E. = 0,006, p = 0,907, Figure 2D).
Modèle INS utilisant la méthode GC
Un test ANOVA a été effectué sur l’INSGC au SMC dans les 0,4-0,6 Hz seulement. Les résultats ont montré une interaction significative entre le sujet et la direction (F(1,21) = 8,116, p = 0,010). L’analyse par paires a montré que l’INSGC des femmes aux hommes était significativement plus élevée dans le sujet de conflit que dans le sujet de soutien (DM = 5,50, SE = 2,61, p = 0,043). En revanche, laCG de l’INS des hommes aux femmes n’était pas significativement différente entre les sujets (DM = 1,42, SE = 2,61, p = 0,591, figure 2E).
Figure 2: Résultats de la simulation et de l’expérience empirique. (A) Résultats de la simulation de trois échantillons simulés. LeWTC INS avec autocorrélation décalé dans le temps était significativement plus élevé que l’INSWTC décalé dans le temps sans autocorrélation et INSpWTC. Il n’y avait pas de différence significative entre l’INSWTC sans autocorrélation et le pWTC décalé dans le temps. (B) La carte t de l’INSWTC dans l’expérience empirique, montrant des effets contextuels significatifs dans les 0,04-0,09 Hz lorsque l’activité SMC des hommes a été inférieure de 2 à 6 s à celle des femmes. Il y avait également un effet de contexte légèrement considérable dans les 0,4-0,6 Hz lorsque l’activité SMC des hommes accusait un retard de 4 s par rapport à celle des femmes. (C) La carte t de l’INSpWTC, montrant un effet contextuel significatif dans les 0,4-0,6 Hz lorsque l’activité SMC des hommes était à la traîne par rapport à celle des femmes de 4 s. (D) Comparaison desINS directionnels pWTC à différents sujets par pWTC. L’INS directionnelle des femmes aux hommes est significativement plus élevée dans les contextes de conflit que dans les contextes favorables. (E) Validation de l’INS directionnel par test GC (INSGC). Le modèle résultant de l’INSGC est similaire à celui de l’INSpWTC. Veuillez cliquer ici pour voir une version agrandie de cette figure.
Figure supplémentaire 1 : Graphique du spectre de puissance pour la fréquence d’échantillonnage à 11,1 Hz (ligne bleue) et 55,6 Hz (ligne rouge). Le modèle de spectre de puissance pour les deux est assez similaire. Veuillez cliquer ici pour télécharger ce fichier.
Figure supplémentaire 2 : Les cartes pWTC du sol et du ceil WTC. (A) Panneau de gauche : la carte WTC décalée dans le temps générée par deux mêmes signaux, l’axe des x est le point temporel et l’axe des y est la bande de fréquences. La valeur moyenne du WTC en tous points est d’environ 1. Panneau de droite : la carte pWTC de deux signaux similaires. La carte pWTC est assez similaire à la carte WTC. (B) Panneau de gauche: la carte WTC décalée dans le temps générée par deux signaux aléatoires, l’axe des x est le point temporel et l’axe des y est la bande de fréquences. La valeur moyenne de WTC en tous points est d’environ 0. Panneau de droite : la carte pWTC de deux signaux similaires. La carte pWTC est assez similaire à la carte WTC. Veuillez cliquer ici pour télécharger ce fichier.
Dans les études d’hyperscan, il est généralement essentiel de décrire les modèles directionnels et temporels de la circulation de l’information entre les individus. La plupart des études précédentes sur l’hyperscan fNIRS ont utilisé le WTC25 traditionnel pour déduire ces caractéristiques en calculant l’INS décalé dans le temps. Cependant, comme l’une des caractéristiques intrinsèques du signal fNIRS20,21, l’effet d’autocorrélation pourrait confondre l’INS retardé dans le temps. Pour résoudre ce problème, dans le protocole du présent document, une méthode appelée pWTC a été introduite22. Cette méthode estime l’INS retardé dans le temps après une autocorrélation partiellement éteinte et maintient les avantages de la méthode WTC. Ce protocole offre des conseils étape par étape sur la façon de mener des pWTC et valide les résultats de pWTC en comparant ses résultats avec ceux des tests WTC et GC traditionnels.
Les étapes critiques de l’application de pWTC dans les données d’hyperscan basées sur fNIRS sont illustrées dans ce protocole. Plus précisément, tout d’abord, pour calculer le WTC décalé dans le temps, le WTC autocorrélé et le WTC aligné dans le temps doivent être calculés sur la base de la série chronologique fNIRS décalée dans le temps. Ensuite, les pWTC sont calculés à différents décalages temporels selon l’équation 1. Les résultats du pWTC renvoient une matrice temps x fréquence, et les valeurs de la matrice vont de 0 à 1. Ainsi, d’autres tests statistiques peuvent être effectués sur ces valeurs.
Dans le protocole de démonstration, les résultats représentatifs du WTC traditionnel ont montré deux effets significatifs à deux bandes de fréquences: 0,4-0,6 Hz. Cependant, l’impact dans les 0,04-0,09 Hz n’a pas survécu au seuil dans les résultats pWTC, ce qui suggère que cet effet pourrait être confondu par l’effet d’autocorrélation du signal fNIRS. D’autre part, les résultats dans la plage de 0,4 à 0,6 Hz ont été bien répliqués par la méthode pWTC. Ces résultats indiquent qu’après avoir supprimé l’effet d’autocorrélation, le pWTC fournit des développements plus sensibles et spécifiques pour déduire les modèles directionnels et temporels de l’INS entre les individus. Une autre possibilité, cependant, est que le pWTC ne soit pas sensible aux modèles directionnels et temporels de l’INS dans les gammes de fréquences inférieures que dans les gammes de fréquences plus élevées, ce qui entraîne une sous-estimation de l’effet INS. Des études futures sont nécessaires pour clarifier davantage ces possibilités.
Une comparaison avec le test GC appuie davantage cette conclusion. Les résultats du test GC étaient assez similaires à ceux du pWTC, montrant un flux d’informations important des femmes vers les hommes, mais pas des hommes vers les femmes. Il y avait une légère différence entre les résultats du test GC et le pWTC, c’est-à-dire que l’effet d’interaction entre le sujet et la direction était marginalement significatif dans les résultats du pWTC, mais atteignait une signification dans le test GC. Cette différence peut être due au fait que le pWTC est calculé à une échelle de temps plus fine que le test GC. Ainsi, bien que les tests pWTC et GC puissent fournir des résultats fiables lors du contrôle de l’effet d’autocorrélation, le pWTC est avantageux car il n’est pas nécessaire de faire des hypothèses stationnaires et détient une structure à spectre temporel élevé.
La méthode pWTC a également ses limites. Semblable au test GC, la causalité déduite de pWTC n’est pas une causalité réelle37,38. Au lieu de cela, il indique seulement une relation temporelle entre les signaux de A et B. Ce problème doit être gardé à l’esprit lors de l’application de la méthode pWTC. Deuxièmement, pWTC ne fait qu’éliminer partiellement l’effet d’autocorrélation. Ainsi, d’autres variables simultanées potentielles, telles que des environnements partagés ou des actions similaires, peuvent encore avoir un impact sur les résultats. Par conséquent, des conclusions sur la direction et le schéma temporel du flux d’information devraient être tirées après avoir contrôlé ces facteurs de confusion.
En outre, il y avait des problèmes compliqués concernant le prétraitement des données fNIRS. Bien que fNIRS ait une tolérance élevée aux mouvements de la tête, les artefacts de mouvement restent la source la plus importante du bruit39. Les grands mouvements de la tête entraîneraient toujours un changement de position des optodes, générant des artefacts de mouvement tels que des pointes aiguës et des décalages de ligne de base. Pour résoudre ces problèmes, de nombreuses approches de correction des artefacts ont été développées, telles que l’interpolation de spline40, le filtrage basé sur les ondelettes39, l’analyse des composantsprincipaux 41 et l’amélioration du signal basée sur la corrélation42, etc. Cooper et ses collègues43 ont comparé ces approches sur la base de données fNIRS réelles sur l’état de repos et ont constaté que le filtrage à base d’ondelettes produisait la plus forte augmentation du rapport contraste/bruit. En outre, Brigadoi et ses collègues44 ont également comparé ces approches dans des données de tâches linguistiques réelles et ont également constaté que le filtrage à base d’ondelettes était l’approche la plus efficace pour corriger les artefacts de mouvement. Ainsi, dans cette étude, un filtrage à base d’ondelettes a été appliqué et également recommandé pour de futures études d’hyperscan fNIRS.
En général, le pWTC est une approche précieuse pour estimer les modèles directionnels et temporels du flux d’informations au cours de l’interaction sociale. Plus important encore, on pense que la méthode pWTC convient également aux études de pseudo-hyperscan (c’est-à-dire que les signaux de deux ou plusieurs cerveaux ne sont pas collectés simultanément45,46). Dans de telles expériences, bien que la direction du flux d’informations soit fixe, il est également intéressant d’examiner la durée du décalage temporel entre l’entrée du signal et le processus du signal. Par conséquent, l’autocorrélation peut également confondre les résultats de l’INS décalé dans le temps. À l’avenir, cette méthode pourra répondre à de nombreuses questions dans l’hyperscan et d’autres études intercerveineuses. Par exemple, déterminer le rôle dominant dans diverses relations sociales, telles que les enseignants et les étudiants, les médecins et les patients, les artistes et le public. De plus, comme pWTC maintient les structures temporelles de l’INS, il est également possible de tester le modèle dynamique de l’INS, tel que la convergence d’attitude de groupe.
Les auteurs ne déclarent aucun intérêt financier concurrent.
Ce travail a été soutenu par la National Natural Science Foundation of China (61977008) et le Young Top Notch Talents of Ten Thousand Talent Program.
Name | Company | Catalog Number | Comments |
fNIRS topography system | Shimadzu Corporation | Shimadzu LABNIRS systen | LABNIRS system contains 40 emitters and 40 detectors for fNIRS signals measurement. In this protocol we used these emitters and detectors created two customized 26-channels probe sets and attached to two caps accroding to 10-20 system. Further, LABNIRS system also contains built-in GUI softwares for data quality check, data convert and data export. |
MATLAB | The MathWorks, Inc. | MATLAB 2019a | In this protocol, several toolboxs and functions bulit in MATLAB were used: SPM12 toolbox was used to normalize the valided MRI data through its GUI. NIRS_SPM toolbox was used to project the MNI coordinates of the probes to the AAL template through its GUI. Homer3 toolbox was used to remove motion artifacts through its function hmrMotionCorrectWavelet with default parameters. Wavelet toolbox was used to compute WTC and pWTC through its function wcoherence. |
MRI scanner | Siemens Healthineers | TRIO 3-Tesla scanner | In this protocol, the MRI scanner was used to obtain MNI coordinates of each channel and optpde. Scan parameters are described in main text. |
customized caps | In this protocol, we first marked two nylon caps with 10-20 system. Then, we made two 26-channels customized optode probes sets. Finally, we attached probes sets to caps aligned with landmarks. |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon