JoVE Logo

S'identifier

30.15 : Bicarbonate-Carbonic Acid Buffer

The carbonic acid-bicarbonate buffer system is critical for maintaining the body's pH balance. It operates on the equilibrium:


H2CO3 ⇋ H+ + HCO3-

In this system, bicarbonate ions (HCO3⁻) act as weak bases, and carbonic acid (H₂CO₃) serves as a weak acid. This dynamic equilibrium enables the system to respond effectively to changes in pH.

When hydrogen ion (H+) levels increase, causing a drop in pH, the equilibrium shifts to the left, converting hydrogen ions into carbonic acid. The enzyme carbonic anhydrase rapidly converts carbonic acid into carbon dioxide (CO2) and water, allowing CO2to be exhaled via the lungs. This mechanism helps lower H+levels and restore pH.

Conversely, when hydrogen ion levels decrease, resulting in a rise in pH, the equilibrium shifts to the right. Carbonic acid dissociates into H+and HCO3⁻, replenishing hydrogen ions and stabilizing pH. This balance ensures the body maintains a steady pH, which is vital for normal physiological function.

The effectiveness of the carbonic acid-bicarbonate buffer system depends on the availability of its buffering components. If a large acid load depletes bicarbonate ions (the "alkaline reserve"), the system's buffering capacity diminishes, leading to significant pH changes.

Although the body typically has ample bicarbonate reserves, the system's efficacy can be compromised in respiratory or metabolic dysfunction cases, where either CO₂ excretion or bicarbonate regulation is impaired.

The carbonic acid-bicarbonate buffer system plays a central role in maintaining acid-base homeostasis. By dynamically responding to changes in hydrogen ion concentrations, this system helps preserve the stability necessary for vital physiological processes.

Tags

Carbonic AcidBicarbonate Buffer SystemPH BalanceHydrogen IonsEquilibriumCarbon DioxideCarbonic AnhydraseAcid base HomeostasisBuffering CapacityPhysiological FunctionAlkaline ReserveRespiratory DysfunctionMetabolic Dysfunction

Du chapitre 30:

article

Now Playing

30.15 : Bicarbonate-Carbonic Acid Buffer

Fluid, Electrolyte, and Acid-Base Balance

477 Vues

article

30.1 : Body Water Content and Fluid Compartments

Fluid, Electrolyte, and Acid-Base Balance

540 Vues

article

30.2 : Composition of Body Fluids

Fluid, Electrolyte, and Acid-Base Balance

296 Vues

article

30.3 : Fluid Movement Between Compartments

Fluid, Electrolyte, and Acid-Base Balance

436 Vues

article

30.4 : Regulation of Water Intake

Fluid, Electrolyte, and Acid-Base Balance

424 Vues

article

30.5 : Regulation of Water Output

Fluid, Electrolyte, and Acid-Base Balance

234 Vues

article

30.6 : Disorder of Water Balance

Fluid, Electrolyte, and Acid-Base Balance

244 Vues

article

30.7 : Roles of Electrolytes: Sodium and Potassium

Fluid, Electrolyte, and Acid-Base Balance

159 Vues

article

30.8 : Roles of Electrolytes: Chloride and Bicarbonate

Fluid, Electrolyte, and Acid-Base Balance

119 Vues

article

30.9 : Roles of Electrolytes: Calcium and Phosphate

Fluid, Electrolyte, and Acid-Base Balance

128 Vues

article

30.10 : Regulation of Sodium and Potassium

Fluid, Electrolyte, and Acid-Base Balance

313 Vues

article

30.11 : Acid-Base Balance

Fluid, Electrolyte, and Acid-Base Balance

224 Vues

article

30.12 : Buffer Systems in the Body

Fluid, Electrolyte, and Acid-Base Balance

460 Vues

article

30.13 : Protein Buffers in Blood Plasma and Cells

Fluid, Electrolyte, and Acid-Base Balance

425 Vues

article

30.14 : Phosphate Buffer

Fluid, Electrolyte, and Acid-Base Balance

704 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.