S'identifier

The outcome of any hypothesis testing leads to rejecting or not rejecting the null hypothesis. This decision is taken based on the analysis of the data, an appropriate test statistic, an appropriate confidence level, the critical values, and P-values. However, when the evidence suggests that the null hypothesis cannot be rejected, is it right to say, 'Accept' the null hypothesis?

There are two ways to indicate that the null hypothesis is not rejected. 'Accept' the null hypothesis and 'fail to reject' the null hypothesis. Superficially, both these phrases mean the same, but in statistics, the meanings are somewhat different. The phrase 'accept the null hypothesis' implies that the null hypothesis is by nature true, and it is proved. But a hypothesis test simply provides information that there is no sufficient evidence in support of the alternative hypothesis, and therefore the null hypothesis cannot be rejected. The null hypothesis cannot be proven, although the hypothesis test begins with an assumption that the hypothesis is true, and the final result indicates the failure of the rejection of the null hypothesis. Thus, it is always advisable to state 'fail to reject the null hypothesis' instead of 'accept the null hypothesis.'

'Accepting' a hypothesis may also imply that the given hypothesis is now proven, so there is no need to study it further. Nevertheless, that is never the case, as newer scientific evidence often challenges the existing studies. Discovery of viruses and fossils, rediscovery of presumed extinct species, criminal trials, and novel drug tests follow the same principles of testing hypotheses. In those cases, 'accepting' a hypothesis may lead to severe consequences.

Tags

Hypothesis TestingNull HypothesisRejectFail To RejectConfidence LevelP valuesTest StatisticStatistical AnalysisEvidenceAlternative HypothesisAcceptanceImplicationsScientific EvidenceStatistical Principles

Du chapitre 9:

article

Now Playing

9.8 : Hypothesis: Accept or Fail to Reject?

Hypothesis Testing

27.0K Vues

article

9.1 : Qu’est-ce qu’une hypothèse ?

Hypothesis Testing

9.2K Vues

article

9.2 : Hypothèses nulles et alternatives

Hypothesis Testing

7.6K Vues

article

9.3 : Région critique, valeurs critiques et niveau de signification

Hypothesis Testing

11.4K Vues

article

9.4 : Valeur P

Hypothesis Testing

6.4K Vues

article

9.5 : Types de tests d’hypothèses

Hypothesis Testing

25.0K Vues

article

9.6 : Prise de décision : méthode de la valeur P

Hypothesis Testing

5.0K Vues

article

9.7 : Prise de décision : méthode traditionnelle

Hypothesis Testing

3.8K Vues

article

9.9 : Erreurs dans les tests d’hypothèses

Hypothesis Testing

3.9K Vues

article

9.10 : Tester une affirmation sur la proportion de la population

Hypothesis Testing

3.2K Vues

article

9.11 : Test d’une allégation sur la moyenne : Population connue SD

Hypothesis Testing

2.6K Vues

article

9.12 : Test d’une affirmation sur la moyenne : Population inconnue ET

Hypothesis Testing

3.3K Vues

article

9.13 : Test d’une affirmation sur l’écart-type

Hypothesis Testing

2.4K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.