S'identifier

The z and the Student t distribution estimate the population mean using the sample mean and standard deviation. However, to decide which distribution to use for a calculation, one needs to determine the sample size, the nature of the distribution, and whether the population standard deviation is known. If the population standard deviation is known and the population is normally distributed, or if the sample size is greater than 30, the z distribution is preferred. The Student t distribution is preferred when the population standard deviation is unknown, and the population is normally distributed; or if the sample size exceeds 30.

It is important to note that for a sample with a size less than 30, drawn from a skewed or unknown distribution, neither the z nor t distribution can be used. Therefore, z and t distributions cannot accurately estimate the population mean for samples drawn from voluntary responses, convenience sampling, or skewed or unknown population distributions. One must employ nonparametric statistical methods such as bootstrapping for categorical data or when the sample size is small, i.e., less than 30.

Tags

Z DistributionStudent T DistributionPopulation MeanSample SizeStandard DeviationNormal DistributionNonparametric MethodsBootstrappingSkewed DistributionSample Mean

Du chapitre 8:

article

Now Playing

8.4 : Choosing Between z and t Distribution

Distributions

2.7K Vues

article

8.1 : Distributions pour estimer le paramètre de population

Distributions

4.0K Vues

article

8.2 : Degrés de liberté

Distributions

3.0K Vues

article

8.3 : Distribution des étudiants

Distributions

5.7K Vues

article

8.5 : Distribution du khi-deux

Distributions

3.4K Vues

article

8.6 : Trouver les valeurs critiques du khi-deux

Distributions

2.8K Vues

article

8.7 : Estimation de l’écart-type de la population

Distributions

2.9K Vues

article

8.8 : Test de qualité de l’ajustement

Distributions

3.2K Vues

article

8.9 : Fréquences attendues dans les essais de qualité de l’ajustement

Distributions

2.5K Vues

article

8.10 : Tableau de contingence

Distributions

2.4K Vues

article

8.11 : Introduction au test d’indépendance

Distributions

2.0K Vues

article

8.12 : Test d’hypothèse pour test d’indépendance

Distributions

3.4K Vues

article

8.13 : Détermination de la fréquence prévue

Distributions

2.1K Vues

article

8.14 : Test d’homogénéité

Distributions

1.9K Vues

article

8.15 : F Répartition

Distributions

3.6K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.