JoVE Logo

S'identifier

The chair conformation is the most stable form of cyclohexane due to the absence of angle and torsional strain. The absence of angle strain is a result of cyclohexane’s bond angle being very close to the ideal tetrahedral bond angle of 109.5° in its chair conformer. Similarly, the torsional strain is also absent owing to the perfectly staggered arrangement of bonds.

The hydrogen atoms linked to carbons are arranged in two different axial and equatorial orientations to achieve this staggered form. The axial bonds are directed straight up or down, lying parallel to the ring axis, whereas the equatorial bonds are pointed sideways roughly along the equator of the ring. Out of the six axial bonds, three are pointed up, and the remaining three are pointed downward. Similarly, three bonds are slanted upwards among the six equatorial bonds, while the remaining three are slanted downwards. Thus, each carbon atom in the cyclohexane ring has an axial and an equatorial bond, pointing in opposite directions.

A chair conformation of cyclohexane can undergo a conformational change into another chair conformer by the partial rotation of C-C bonds. This chair-chair interconversion that leads to the generation of two equivalent energy forms is known as ring flipping. Upon ring flipping, the axial and equatorial bonds interchange their positions. The axial bonds in one chair conformation get converted to equatorial bonds in the other chair conformation, while equatorial bonds change their position to axial bonds.

Tags

Chair ConformationCyclohexaneAngle StrainTorsional StrainBond AngleTetrahedral Bond AngleStaggered ArrangementAxial OrientationEquatorial OrientationRing Flipping

Du chapitre 3:

article

Now Playing

3.11 : Chair Conformation of Cyclohexane

Alcanes et cycloalcanes

14.1K Vues

article

3.1 : Structure des alcanes

Alcanes et cycloalcanes

26.5K Vues

article

3.2 : Isomères constitutionnels des alcanes

Alcanes et cycloalcanes

17.4K Vues

article

3.3 : Nomenclature des alcanes

Alcanes et cycloalcanes

20.8K Vues

article

3.4 : Propriétés physiques des alcanes

Alcanes et cycloalcanes

10.6K Vues

article

3.5 : Projections de Newman

Alcanes et cycloalcanes

16.0K Vues

article

3.6 : Conformations de l'éthane et du propane

Alcanes et cycloalcanes

13.5K Vues

article

3.7 : Conformations du butane

Alcanes et cycloalcanes

13.6K Vues

article

3.8 : Cycloalcanes

Alcanes et cycloalcanes

11.8K Vues

article

3.9 : Conformations des cycloalcanes

Alcanes et cycloalcanes

11.4K Vues

article

3.10 : Conformations du cyclohexane

Alcanes et cycloalcanes

11.9K Vues

article

3.12 : Stabilité des cyclohexanes substitués

Alcanes et cycloalcanes

12.2K Vues

article

3.13 : Cyclohexanes disubstitués : isomérie cis-trans

Alcanes et cycloalcanes

11.6K Vues

article

3.14 : Énergie de combustion : mesure de la stabilité des alcanes et des cycloalcanes

Alcanes et cycloalcanes

6.2K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.