Method Article
Combinado precursor de marcaje isotópico y etiquetado isobárico (cPILOT) es una estrategia proteómica cuantitativa que mejora las capacidades de multiplexación de muestra de las etiquetas isobáricas. Este protocolo describe la aplicación de cPILOT a los tejidos de los controles de modelo de ratón de la enfermedad y de tipo salvaje de un Alzheimer.
Existe una creciente demanda para analizar muchas muestras biológicas para la comprensión de la enfermedad y el descubrimiento de biomarcadores. estrategias proteómica cuantitativa que permiten la medición simultánea de múltiples muestras se han generalizado y reducir en gran medida los costes y los tiempos experimentales. Nuestro laboratorio ha desarrollado una técnica llamada precursor combinado marcaje isotópico y etiquetado isobárico (cPILOT), que mejora la muestra de multiplexación de marcaje isotópico tradicional o enfoques de etiquetado isobáricas. cPILOT Global se puede aplicar a las muestras procedentes de células, tejidos, fluidos corporales, o organismos completos y proporciona información sobre la abundancia relativa de proteínas a través de diferentes condiciones de la muestra. cPILOT funciona por 1) usando condiciones de tampón de pH bajo para selectivamente péptido dimethylate N-terminales y 2) usando condiciones de tampón de pH alto para etiquetar aminas primarias de residuos de lisina con reactivos isobáricas comercialmente disponibles (véase la Tabla de Materiales / Reactivos). El grado demultiplexación muestra disponible depende del número de etiquetas precursores utilizados y el reactivo de marcado isobárica. A continuación, presentamos un análisis de 12-plex usando luz y dimetilación pesado combinado con seis plex reactivos isobáricas para analizar 12 muestras de tejidos de ratón en un solo análisis. multiplexación mejorada es útil para reducir el tiempo y el coste experimental y lo más importante, lo que permite la comparación a través de muchas condiciones de la muestra (réplicas biológicas, estadio de la enfermedad, los tratamientos con fármacos, genotipos, o longitudinales puntos de tiempo) con sesgo menos experimental y error. En este trabajo, el enfoque cPILOT global se utiliza para analizar el cerebro, el corazón, el hígado y los tejidos biológicos a través de repeticiones de los controles modelo de ratón de la enfermedad y de tipo salvaje de Alzheimer. Global cPILOT se puede aplicar para estudiar otros procesos biológicos y adaptado para aumentar la multiplexación muestra a mayor de 20 muestras.
Proteómica menudo implica el análisis de muchas muestras utilizadas para comprender mejor los procesos de enfermedad, la cinética enzimática, modificaciones post-traduccionales, de respuesta a los estímulos ambientales, de la respuesta a los tratamientos terapéuticos, el descubrimiento de biomarcadores, o mecanismos de drogas. Los métodos cuantitativos se pueden emplear para medir diferencias relativas en los niveles de proteína a través de las muestras y puede ser libre de etiqueta o implicar marcaje isotópico (metabólica, química o enzimática). métodos de marcaje de isótopos estables han crecido en popularidad debido a que permiten muchas muestras a ser analizadas simultáneamente y son adecuados para muestras de diferentes células, tejidos, fluidos corporales, u organismos enteros. Los métodos 1, 2, 3, 4, 5, 6, 7 aumentar el rendimiento experimental, el etiquetado de isótoposal tiempo que reduce el tiempo de adquisición, los costos, y el error experimental. Estos métodos utilizan los espectros de masas precursor para medir la abundancia relativa de las proteínas de picos de péptidos. En contraste, los reactivos de marcado isobáricas 8, 9, 10 generan iones informadores que se detectan ya sea en MS / MS o MS 3 11 espectros y estos picos se utilizan para informar sobre la abundancia relativa de las proteínas.
El estado de la técnica actual en la multiplexación proteómica es o bien un 10-plex 12 o 12-plex análisis etiqueta isobárica 13. Multiplexación muestra mejorada (es decir,> 10 muestras) métodos han sido desarrollados por nuestro laboratorio para los tejidos 14, 15, 16, 17, y por otros para el análisis de células 18 sup>, 19, 20, 21 tejidos, o péptidos dirigidos 22. Hemos desarrollado una técnica de multiplexación mejorado denominado precursor de marcaje isotópico combinado con etiquetado isobárico (cPILOT). CPILOT Global es útil para obtener información acerca de las concentraciones relativas de todas las proteínas a través de diferentes condiciones de la muestra (≥12) 14. La Figura 1 muestra un flujo de trabajo general cPILOT. Trípticos o Lys-C péptidos se etiquetan de forma selectiva en el extremo N-terminal con dimetilación usando bajo pH 2 y en los residuos de lisina con 6-plex reactivos usando pH alto. Esta estrategia se duplica el número de muestras que se pueden analizar con reactivos isobáricas que ayuda a reducir los costos experimentales y, además, reduce pasos y el tiempo de experimentación.
cPILOT es flexible ya que hemos desarrollado otros métodos para estudiar la modificación oxidativa después de la traducciónficaciones, incluyendo proteínas 3-nitrotirosina modificado 14 y de cisteína que contiene péptidos con S-nitrosilación (oxcyscPILOT) 23. También hemos desarrollado un aminoácido enfoque selectivo, cPILOT cisteína (cyscPILOT) 17. MS 3 adquisición con una parte superior de iones de 11 o selectiva-y 1 -ion método 15 puede ayudar a reducir la interferencia de iones reportero y mejorar la precisión cuantitativa de cPILOT. El uso de MS 3 en el método de adquisición requiere un instrumento de alta resolución con un analizador de masas orbitrap aunque de baja resolución instrumentos trampa de iones también pueden trabajar 24.
Anteriormente, cPILOT se ha utilizado para estudiar las proteínas hepáticas 16 de modelo de ratón de la enfermedad de Alzheimer. A continuación, describimos cómo realizar análisis global cPILOT utilizando el cerebro, el corazón y el hígado homogeneizado para estudiar el papel de la peripheria en la enfermedad de Alzheimer. Este experimento incorpora replicación biológica. Debido a la versatilidad de cPILOT, los usuarios interesados pueden utilizar la técnica para estudiar otros tejidos para una serie de problemas y sistemas biológicos.
Ética declaración: Los ratones fueron adquiridos de una institución independiente de investigación biomédica, sin ánimo de lucro y alojados en la División de Recursos Animales de Laboratorio de la Universidad de Pittsburgh. Todos los animales protocolos fueron aprobados por el Comité de Cuidado y Uso de Animales Institucional de la Universidad de Pittsburgh.
1. extracción de proteínas y la generación de péptidos de Química-etiquetado
La desalación 3. Muestra
4. dimetilación Etiquetado (N-terminales)
5. isobárico Tagging (residuos de Lys)
6. intercambio catiónico fuerte
7. Cromatografía de líquidos-espectrometría de masas en tándem (LC-MS / MS) y MS 3
8. Análisis de Datos 16
cPILOT utiliza la química basado en amina a químicamente péptidos de la etiqueta en el extremo N-terminal y los residuos de lisina y mejora las capacidades de multiplexado de la muestra. La Figura 2 muestra los datos de MS representante que se obtiene a partir de un análisis cPILOT 12-plex de cerebro, el corazón y los tejidos del hígado de los controles de modelo de ratón de la enfermedad y de tipo salvaje de un Alzheimer. Como se muestra en la Tabla 1, dos réplicas biológicas para los ratones de la enfermedad y de tipo salvaje de Alzheimer se incluyen en este análisis 12-plex. La figura 2A muestra un par de pico cargada doblemente que está separado por m / z espaciamiento de 4 indica un único grupo de dimetilo fue incorporada en el péptido. Tanto la luz y picos dimetilados pesados en este par son independientemente aislada y fragmentada con CID. Los datos MS / MS para cada uno de los péptidos dimetilados se muestran en las Figuras 2B y C. Resultados de la búsqueda indican que este pair de los picos pertenece a la T (dimetil) ELNYFAK (isobárica-tag 6) péptido de la fosfoglicerato proteína quinasa 1. El ión fragmento más intenso es y 3+ que es similar tanto para la luz y picos dimetilados pesados. Estos picos se aíslan más lejos para HCD-MS 3 y se observan los iones informadores (m / z 126-131) como se muestra en las Figuras 2D y 2E. Ambos conjuntos de MS 3 espectros son necesarios para obtener información sobre las 12 muestras. En este ejemplo, las proporciones de iones reportero (AD / WT) (control de la enfermedad / de tipo salvaje de Alzheimer) para el cerebro, el hígado y los tejidos del corazón son similares a través de las dos réplicas biológicas. Los valores de veces de cambio para cada comparación sugieren que fosfoglicerato quinasa 1 los niveles en el cerebro y el corazón son más altas en los ratones de AD, mientras que en el hígado de los niveles son más bajos.
Figure 1: Proteómica flujo de trabajo utilizando cPILOT. Como un ejemplo, este flujo de trabajo describe el análisis de 12 muestras individuales. Las proteínas de los tejidos, células o fluidos corporales se extraen y se añade un patrón de proteína adecuado (por ejemplo bovina alfa-caseína). Las proteínas se digirieron utilizando tripsina. Los péptidos se etiquetan en el extremo N-terminal mediante el uso de luz o dimetilación pesada (pH ~ 2,5) y en los residuos de lisina mediante el uso de TMT 6 -plex (pH ~ 8,5). Péptidos marcados se combinaron en una sola mezcla y sujeto a SCX RP-LC-MS / MS y MS 3. Haga clic aquí para ver una versión más grande de esta figura.
Figura 2: Datos de Ejemplo cPILOT de péptidos a partir de cerebro, el corazón y los tejidos del hígado de los controles de modelo de ratón de la enfermedad y de tipo salvaje de un Alzheimer. Precursor de datos (A) muestra ligeras y pesadas péptidos dimetilados, representados por los picos a m / z 643,854 y 647,875. Se seleccionaron estos péptidos, aislado, y fragmentado, generando así CID-espectros MS / MS (B y C), que proporcionó la identificación de péptidos. Un adicional de selección, el aislamiento, y la fragmentación del ión más intenso fragmento de la luz y péptidos dimetilados pesados en la etapa de MS / MS generado HCD-MS 3 espectros (D y E), respectivamente. La secuencia del péptido es T (dimetil) ELNYFAK (isobárica-tag 6) y pertenece a la fosfoglicerato quinasa 1. Haga clic aquí para ver una versión más grande de esta figura.
Reactivo isobárica0; | ||||||
126 | 127 | 128 | 129 | 130 | 131 | |
dimetilaci luz | WT una | AD b | WT | ANUNCIO | WT | ANUNCIO |
cerebro | corazón | hígado | ||||
dimetilaci pesada | WT | ANUNCIO | WT | ANUNCIO | WT | ANUNCIO |
corazón | hígado | cerebro | ||||
El tejido es ya sea desde un un control de tipo salvaje (WT) o el ratón de la enfermedad (AD) b de Alzheimer. |
Tabla 1: agrupación cPILOT de AD y cerebro de WT, el corazón y los tejidos del hígado.
cPILOT permite la medición simultánea de más de 12 muestras únicas. A fin de garantizar el etiquetado exitosa tanto en el N-terminal y lisina residuos de péptidos, es imperativo para que el pH correcto para cada conjunto de reacciones y para llevar a cabo la reacción dimetilación primero para el etiquetado del péptido. dimetilación selectiva en el extremo N-terminal se realiza por tener un pH a ~ 2,5 (± 0,2). Esto se consigue mediante la explotación de las diferencias de los valores de pKa de los grupos amino en la lisina y la N-terminal. A pH 2,5, la lisina es inactivo (pKa ~ 10,5); sin embargo, si el pH es ligeramente ácido (es decir, pH 5-7) o básico, se dimetilado tanto el N-terminales y los residuos de lisina. Además, si el etiquetado isobárico se realiza primero a un pH bajo, la N-terminales tendrá la etiqueta y lisina residuos isobáricas se dimetilado. Esto puede resultar en menos fragmentos de ser seleccionado para MS 3 como tendrían que ser seleccionado iones b. Los costos relativos de la dimetilreacciones ación son de bajo costo en comparación con los reactivos isobáricas comerciales. Si bien se puede utilizar todo un vial de reactivo isobárica por 100 g, también hemos tenido éxito en el uso medio del vial reactivo por 100 g con etiquetado de eficiencia comparable. Esto ayuda a reducir significativamente los costos de los experimentos cPILOT individuales y permite más muestras para ser analizadas. También es importante señalar que otros reactivos de marcado isobáricas se pueden utilizar en lugar del reactivo isobárica utilizado en este protocolo ya que previamente han demostrado 14. Para garantizar una alta eficiencia de marcaje y etiquetado, es importante añadir reactivos a las muestras rápidamente. Esto permitirá que para las muestras que tengan aproximadamente el mismo tiempo de reacción. Para fines cuantitativos, cada muestra debe ser tratada idénticamente especialmente antes de la puesta en común de muestras a la dimetilación y pasos de etiquetado isobáricas. Por último, cabe señalar que el trabajo con muchas muestras simultáneamente en los pasos iniciales RequirES habilidad de los usuarios cuidado y atención al Tratamiento de Muestras.
El escenario más ideal es la obtención de los iones informadores para cada proteína en la mezcla a través de las 12 muestras. Sin embargo, este no es el caso para un gran número de proteínas. El número de péptidos detectados con la información de cuantificación para el cPILOT y otra multiplexación mejorada acercarse depende de varios factores, incluyendo el tipo de muestra, el fraccionamiento de la muestra y etapas de procesamiento, los métodos de adquisición de datos de MS, y el tipo de instrumento. Aunque tanto dimetilación y pasos de marcado isobáricas tienen una alta eficiencia de marcaje del péptido de ~ 95-99%, todavía hay ~ 20% de los datos MS 3 que no contendrá informaciones ion reportero. Esto es debido en parte a la utilización de tripsina que genera péptidos de arginina-terminado que resultan en no incorporación de reactivo isobárica. Esto se puede resolver utilizando otras enzimas, tales como LysC, con una solución de compromiso potencial en la identificación de proteínas 25. También para pesadapéptidos dimetilados, el pico seleccionado para la fragmentación pueden ser la M o M-1 pico, que tienen diferentes intensidades y afectará a las intensidades de iones informadores observadas en la etapa de MS 3. Así, puede haber algunos iones bajas reportero intensidad que no son detectados para algunas muestras. Tales situaciones se observan a menudo comúnmente para baja intensidad fragmentos de MS / MS que se aíslan para MS 3 pasos. Una gran solución a este problema se ha incorporado en los espectrómetros de masas trihíbrido, que, en lugar de utilizar la selección de una sola muesca para MS 3, utilizan multi-muesca o múltiples MS / MS fragmenta 26.
Hay una gran cantidad de versatilidad en el enfoque cPILOT especialmente con respecto a la cantidad de muestras que puede ser comparado en un solo análisis (es decir, hasta 20 con reactivos isobáricas comerciales) y los tipos de tejidos utilizados. Hemos demostrado que es fácil de obtener información cuantitativa precisa del cerebro, el corazón, ytejidos de hígado en el mismo análisis en el contexto de una enfermedad. Este método, de manera similar a otros métodos de multiplexación, permite el análisis de múltiples muestras a la vez, y es aplicable a las muestras procedentes de células, tejidos, fluidos corporales, u organismos enteros. Además, cPILOT péptidos marcados son capaces de ser analizados usando ya sea una baja resolución 24 o alto (60000) instrumento. En comparación, la obtención de la medición con éxito utilizando otros métodos de multiplexación puede estar limitada a un tipo específico de muestra (es decir, células) 18, pueden requerir un instrumento con muy alta resolución 20, o el acceso a las etiquetas de isótopos estables. cPILOT es ideal para los usuarios interesados en la comprensión de la enfermedad, el descubrimiento de biomarcadores, como respuesta a un fármaco o intervención terapéutica, o los cambios longitudinales a través de muchos puntos de tiempo. Por otra parte, para las grandes proteómica escopeta análisis de muestras clínicas (donde N es grande, cientos de miles), CPILOT también pueden ser adecuados para ayudar a reducir los costos y el tiempo de experimentación. En el futuro, cPILOT se ampliará para multiplexar un número mayor de muestras utilizando isotópica existente y novedoso y etiquetas isobáricas.
Los autores no tienen intereses en competencia.
Los autores reconocen la Universidad de Pittsburgh fondos iniciales y los NIH, NIGMS subvención R01 (GM 117191-01) a RASR.
Name | Company | Catalog Number | Comments |
Water - MS Grade | Fisher Scientific | W6-4 | 4 L quantity is not necessary |
Acetonitrile - MS Grade | Fisher Scientific | A955-4 | 4 L quantity is not necessary |
Acetic Acid | J.T. Baker | 9508-01 | |
Ammonium hydroxide solution (28 - 30%) | Sigma Aldrich | 320145-500ML | |
Ammonium formate | Acros Organics | 208-753-9 | |
Formic Acid | Fluka Analytical | 94318-250ML-F | |
BCA protein assay kit | Pierce Thermo Fisher Scientific | 23227 | |
Urea | Biorad | 161-0731 | |
Tris | Biorad | 161-0716 | |
Dithiothreiotol (DTT) | Fisher Scientific | BP172-5 | |
Iodoacetamide (IAM) | Acros Organics | 144-48-9 | |
L-Cysteine | Sigma Aldrich, Chemistry | 168149-25G | |
L-1-tosylamido-2 phenylethyl cholormethyl ketone (TPCK)-treated Trypsin from bovine pancreas | Sigma Aldrich, Life Science | T1426-100MG | |
Formaldehyde (CH2O) solution; 36.5 - 38% in H2O | Sigma Aldrich, Life Science | F8775-25ML | |
Formaldehyde (13CD2O) solution; 20 wt % in D2O, 98 atom % D, 99 atom % 13C | Sigma Aldrich, Chemistry | 596388-1G | |
Sodium Cyanoborohydride; reagent grade, 95% | Sigma Aldrich | 156159-10G | |
Sodium Cyanoborodeuteride; 96 atom % D, 98% CP | Sigma Aldrich, Chemistry | 190020-1G | |
Strong Cation Exchange (SCX) spin tips sample prep kit | Protea BioSciences | SP-155-24kit | |
Triethyl ammonium bicarbonate (TEAB) buffer | Sigma Aldrich, Life Science | T7408-100ML | |
Isobaric Tagging Kit (TMT 6 plex) - 6 reactions (1 x 0.8 mg) | Thermo Fisher Scientific | 90061 | |
Hydroxylamine hydrochloride | Sigma Aldrich, Chemistry | 255580-100G | |
Standard vortex mixer | Fisher Scientific | 2215365 | any mixer can be used |
Oasis HLB 1 cc (10 mg) extraction cartridges | Waters | 186000383 | These are C18 cartridges |
Visiprep SPE vacuum manifold, DL (disposable liner), 24 port model | Sigma Aldrich | 57265 | A 12 port model is also sufficient |
Speed-vac | Thermo Scientific | SPD1010 | any brand of speed vac is sufficient |
Water bath chamber | Thermo Scientific | 2825/2826 | Any brand of a water bath chamber with controlled temperatures is sufficient. |
Mechanical Homogenizer (i.e. FastPrep-24 5G) | MP Biomedicals | 116005500 | |
Eksigent Nano LC - Ultra 2D with Nano LC AS-2 autosampler | Sciex | - | This model is no longer available. Any nano LC with an autosampler is sufficient. |
LTQ Orbitrap Velos Mass Spectrometer | Thermo Scientific | - | This model is no longer available. Other high resolution instruments (e.g. Orbitrap Elite, Orbitrap Fusion, or Orbitrap Fusion Lumos) can be used. |
Protein software (e.g. Proteome Discoverer) | Thermo Scientific | IQLAAEGABSFAKJMAUH | |
Analytical balance | Mettler Toledo | AL54 | |
Stir plate | VWR | 12365-382 | Any brand of stir plates are sufficient |
pH meter (Tris compatiable) | Fisher Scientific (Accumet) | 13-620-183 | Any brand of a pH meter is sufficient |
pH 10 buffer | Fisher Scientific | 06-664-261 | Any brand of pH buffer 10 is sufficient |
pH 7 buffer | Fisher Scientific | 06-664-260 | Any brand pH buffer 7 is sufficient |
1.5 mL eppendorf tubes, 500 pk | Fisher Scientific | 05-408-129 | Any brand of 1.5 mL eppendorf tubes are sufficient |
0.6 mL eppendorf tubes, 500 pk | Fisher Scientific | 04-408-120 | Any brand of 0.6 mL eppendorf tubes are sufficient |
0.65 µm Ultrafree MC DV centrifugal filter units | EMD Millipore | UFC30DV00 | |
2 mL microcentrifuge tubes, 72 units | Thermo Scientific | 69720 | |
C18 packing material (5 µm, 100 Å) | Bruker | PM5/61100/000 | This item is no longer available from Bruker. Alternative packing material with listed specifications will be sufficient |
C18 packing material (5 µm, 200 Å) | Bruker | PM5/61200/000 | This item is no longer available from Bruker. Alternative packing material with listed specifications will be sufficient |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados