Method Article
* Estos autores han contribuido por igual
This protocol describes the required steps to execute in vitro and in vivo deacetylation assays in order to establish the role of proteins as specific deacetylation substrates for sirtuins and further study the role of reversible - lysine acetylation as a post-translational modification.
Acetylation has emerged as an important post-translational modification (PTM) regulating a plethora of cellular processes and functions. This is further supported by recent findings in high-resolution mass spectrometry based proteomics showing that many new proteins and sites within these proteins can be acetylated. However the identity of the enzymes regulating these proteins and sites is often unknown. Among these enzymes, sirtuins, which belong to the class III histone lysine deacetylases, have attracted great interest as enzymes regulating the acetylome under different physiological or pathophysiological conditions. Here we describe methods to link SIRT2, the cytoplasmic sirtuin, with its substrates including both in vitro and in vivo deacetylation assays. These assays can be applied in studies focused on other members of the sirtuin family to unravel the specific role of sirtuins and are necessary in order to establish the regulatory interplay of specific deacetylases with their substrates as a first step to better understand the role of protein acetylation. Furthermore, such assays can be used to distinguish functional acetylation sites on a protein from what may be non-regulatory acetylated lysines, as well as to examine the interplay between a deacetylase and its substrate in a physiological context.
Post-translational modifications (PTMs) regulate cell signaling networks allowing cells to rapidly respond to internal and external signals. Over the last few decades, many different PTMs playing a pivotal role in diverse processes have been identified but only a few have been studied extensively, such as phosphorylation, acetylation and ubiquitination 1-3. Focusing on acetylation, Allfrey et al. were the first to propose a role for histone acetylation in regulating gene transcription about 50 years ago 4. Research in this field has revealed that histone lysine acetylation modulates chromatin condensation and it is considered to be an epigenetic mark as part of the histone code 5. Although it took a long time until the discovery of tubulin as the first non-histone acetylation target 6, it is well established now that hundreds of eukaryotic proteins beyond histones can be acetylated and lysine acetylation has been recognized as a wide-spread PTM that may rival phosphorylation and ubiquitination in its prevalence 7-9. Interestingly, non-histone acetylated proteins can be signaling molecules in the cytoplasm, transcription factors in the nucleus, and metabolic enzymes in mitochondria, highlighting the significance of acetylation in regulating a plethora of cellular processes.
The acetylation status of a protein depends on the coordinated and opposing function of lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) which add and remove acetyl groups from proteins. The reversible acetylation of lysine, which involves neutralization of a positive charge 10, alters protein structure and it seems very likely to also alter enzymatic function in several cases 11-13. Focusing on KDACs, 18 proteins have been identified in the human and mouse genomes 14-16. Among them, mammalian sirtuins (also called class III histone lysine deacetylases) which are distinct from other members as they require NAD+ for their enzymatic function, have attracted extensive interest in this research field 16. In mammals, seven sirtuins (SIRT1-7) have been identified, each of them sharing a conserved 275-amino-acid catalytic core domain, which are mainly categorized according to their subcellular localization to the nucleus (SIRT1, 6, and 7), mitochondria (SIRT3, 4, and 5), or cytoplasm (SIRT2). SIRT1-3 have a robust deacetylation activity, while SIRT4 is reported to display ADP-ribosyltransferase activity, SIRT5 may function as a protein desuccinylase and demalonylase, and SIRT6 and SIRT7 display weak deacetylase activity but are involved in other types of acylations 17. In accordance with the significance of acetylation as a regulatory PTM modification involved in several cellular functions, sirtuins have also been implicated in a wide range of processes. After the first breakthrough studies establishing the role of sirtuins in life span extension, it has been shown that they are involved in diverse cellular functions including DNA repair, maintenance of genomic instability, apoptosis, response to stress and inflammation, control of energy efficiency, circadian clocks and metabolism, as well as contributing to the initiation and/or progression of age-related diseases such as cancer, neurodegeneration and type 2 diabetes 15,16.
Despite the significant progress in the field of sirtuin biology, more work remains to unravel undiscovered roles and functions through the identification of novel substrates. This is evidenced more emphatically by recent advances in high-resolution mass spectrometry (MS) based proteomics which have significantly increased the number of proteins found to be acetylated but most importantly have identified several different acetylated lysines in each protein, arguing that acetylation may be as wide-spread as other PTMs such as phosphorylation 7,8,17. Taking into consideration that specific deacetylases have not yet been identified for most of these acetylated proteins-substrates, it is reasonable to suggest that both in vitro and in vivo deacetylation assays are needed to confirm and establish an acetylated protein as a legitimate substrate of a specific deacetylase. In the experimental protocols described below, details will be given on how to perform both in vitro and in vivo deacetylation assays using SIRT2 as the specific deacetylase.
1. In Vitro Ensayo de desacetilación
2. In Vivo La desacetilación Ensayo
Para que una proteína para ser considerado como un objetivo desacetilación legítimo para cualquier enzima con actividad de desacetilación, tanto in vitro como in vivo en ensayos de desacetilación se tienen que realizar para establecer la interacción entre la desacetilasa y su sustrato. Para el ensayo de desacetilasa in vitro, se requiere la purificación tanto de la desacetilasa y el sustrato de proteína acetilado antes del ensayo se puede hacer. Aquí se utiliza la SIRT2 sirtuinas citoplasmática como el deacetilasa específico que se estudiará. SIRT2 desacetilasa es una enzima y el uso de un mutante que carece de la actividad desacetilasa es muy recomendable como un control negativo para el ensayo de desacetilación. Usando el procedimiento de purificación descrito en 1.1, tanto SIRT2 y SIRT2 H187Y se pueden purificar con éxito a una concentración final de 1 g / l. Esto se puede confirmar después de ejecutar las proteínas purificadas en un gel seguida de tinción(Figura 1A, superior), así como después de la transferencia Western utilizando un anticuerpo anti-Flag ya que tanto SIRT2 y SIRT2 H187Y etiquetados con un péptido Flag (Figura 2A, inferior). El mismo procedimiento de purificación puede ser seguido por la purificación de la proteína sustrato con algunas modificaciones. La proteína tiene que ser acetilado antes de que pueda ser utilizado para el ensayo de desacetilación que significa que necesita ser purificado en las células que sobreexpresan el acetil transferasa específica o una mezcla de los sombreros capaces de acetilar la proteína. Usando el procedimiento de purificación descrito en 1.2, la proteína se puede purificar acetilado (Figura 1B, superior). Para confirmar que la proteína es, en efecto acetilado y se puede utilizar para el ensayo de desacetilación in vitro, transferencia de western usando un anticuerpo anti Ac-K es necesaria para mostrar el aumento de los niveles acetilados de la proteína purificada en células que sobreexpresan la acetil-transferasas (Figura 1B, Lower).
Después de la purificación de proteínas con éxito, el ensayo de desacetilación in vitro se puede realizar. Sirtuinas, incluyendo SIRT2, son de clase III desacetilasas de histonas lisina que son distintas de otras desacetilasas, ya que requieren NAD + para su función enzimática. Consistente con esto, no desacetilación puede ser detectada mediante transferencia Western utilizando un anticuerpo anti Ac-K en ausencia de NAD +, independientemente de la presencia de SIRT2 catalíticamente activo (Figura 2, carril 2 vs 1). Por el contrario, la disminución de los niveles acetilados de la proteína acetilado cuando tanto SIRT2 y NAD + están presentes en la reacción sugieren que la proteína puede ser considerado como un objetivo de desacetilación para SIRT2. Con el fin de verificar estos resultados, los diferentes controles negativos se pueden utilizar. Por ejemplo se puede detectar ninguna diferencia en los niveles de desacetilación de la proteína cuando un SIRT2 deficiente desacetilación (SIRT2 H187Y) se utiliza en lugar de la SIRT2 de tipo salvaje catalíticamente activo (Figura 2, carril 5 vs 4). Un efecto similar se puede ver cuando un inhibidor de sirtuin bien establecida, NAM, se añade a la mezcla de reacción, lo que implica que la disminución en los niveles acetilados de la proteína está mediada por la actividad desacetilasa de SIRT2.
desacetilación aberrante está implicada en diversos procesos celulares y enfermedades relacionadas con la edad. Por lo tanto, un paso crucial en la profundización de los conocimientos sobre la interacción entre una histona y su sustrato es establecer esta interconexión en las células, donde este fenómeno puede tener un impacto fisiológico. Por otra parte, la comprobación de desacetilación en sistemas de cultivo celular in vivo permite el estudio de caso de desacetilación en un contexto específico de célula o tejido que se puede conectar más fácilmente a un fenotipo o resultado específico. Esto excluye la posibilidad de que la detectada en Deac vitroactividad etylation es artificial debido a la presencia tanto de la desacetilasa y su sustrato en el tubo al mismo tiempo, que nunca puede ocurrir en condiciones fisiológicas normales en las células. Para el ensayo de desacetilación in vivo, las células que sobreexpresan tanto SIRT2 y SIRT2 H187Y, así como el sustrato de proteína se pueden utilizar siguiendo los procedimientos descritos en 2.1 y 2.2. Los extractos celulares preparados a partir de estas células se pueden confirmar de expresar SIRT2, SIRT2 H187Y, y el sustrato de la proteína mediante inmunotransferencia de tipo Western usando anticuerpos específicos. En el ensayo descrito aquí, todas las proteínas expresadas de forma exógena etiquetados para facilidad de los experimentos realizados (Figura 3, panel inferior para detectar SIRT2 marcada con HA / SIRT2 H187Y y el panel medio para detectar la proteína sustrato Bandera de etiquetado). Para determinar si la proteína diana es un sustrato de la desacetilación de SIRT2, inmunoprecipitación se lleva a cabo utilizando un anticuerpo anti-Flag para tirar hacia abajo la proteína diana followed por transferencia Western utilizando un anticuerpo anti Ac-K. Disminución de los niveles acetilados de la proteína en células que expresan SIRT2 (Figura 3 panel superior, carril 3 vs 2) y la falta de afectar los niveles de acetilados en células que expresan la desacetilasa mutante deficiente SIRT2 (Figura 3 panel superior, carril 4 vs 3) sugieren que la proteína acetilado puede ser un objetivo de desacetilación de la desacetilasa específica in vivo. Esto se puede confirmar aún más cuando desacetilación SIRT2 mediada se inhibe después de tratar las células con el NAM (Figura 3 panel superior, carril 5 vs 3) el establecimiento de los ejes específicos deacetilasa-sustrato en las células estudiadas.
Figura 1: Purificación de tanto la desacetilasa y la proteína-sustrato acetilado que se utilizarán para el ensayo de desacetilación in vitro. (A) 1 g de tanto SIRT2 y SIRT2 H187Y (desacetilación mutante defectuoso) se corrieron en un gel siguiendo el protocolo de purificación como se describe en 1.1. El gel se tiñó con una solución de tinción disponible comercialmente y después de decoloración, tanto proteínas purificadas se puede detectar (superior). Las proteínas pueden ser detectados después de la transferencia en membrana de PVDF y transferencia Western utilizando un anticuerpo anti-Flag (inferior). (B) 1 g de sustrato de proteína y sustrato de proteína acetilado hiper (alfa-enolasa se utilizó como sustrato SIRT2 basado en espectrometría de masas de datos no publicados generados en nuestro laboratorio) se corrieron en un gel siguiendo el protocolo de purificación como se describe en 1.2. El gel se tiñó con una solución de tinción disponible comercialmente y después de decoloración, el sustrato de proteína purificada se puede detectar (superior). La acetilación se puede detectar después de la transferencia en membrana de PVDF y transferencia Western utilizando un anticuerpo anti-Ac-K (medio). total de p roteins pueden detectarse utilizando un anticuerpo anti-Flag (inferior). Por favor, haga clic aquí para ver una versión más grande de esta figura.
Figura 2:. Ensayo de desacetilación vitro sustrato de proteína purificada acetilado (alfa-enolasa) se incuba con SIRT2 o SIRT2 H187Y (desacetilación mutante defectuoso) en presencia de NAD + (carriles 4 y 5). Disminución de los niveles acetilados son detectados por Western Blot usando un anticuerpo anti Ac-K en presencia de SIRT2 pero no en presencia de SIRT2 H187Y (carril 4 vs 5). No se observa actividad de desacetilación cuando NAD + no está incluido en la mezcla de reacción (carril 2 vs 4) o cuando se añade NAM a la mezcla de reacción (carril 6 vs 4).: //www-jove-com.remotexs.ntu.edu.sg/files/ftp_upload/53563/53563fig2large.jpg "Target =" _ blank "> Haga clic aquí para ver una versión más grande de esta figura.
Figura 3:. En las células HEK293T in vivo desacetilación ensayo de forma estable sobreexpresan ya sea SIRT2 o SIRT2 H187Y fueron co-transfectadas con el sustrato de proteína (alfa-enolasa) y sombreros para aumentar los niveles acetilados de la proteína (carril 2 vs 1). La desacetilación se comprobó in vivo después de la inmunoprecipitación utilizando un anticuerpo anti-Flag para tirar hacia abajo el sustrato de proteína y transferencia de Western usando un anticuerpo anti Ac-K. La acetilación se reduce significativamente en las células que sobreexpresan SIRT2 en comparación con el SIRT2 H187Y células que sobreexpresan (carril 3 vs 4). La desacetilación SIRT2 mediadadel sustrato de proteína se inhibe cuando las células se tratan con NAM (carril 5 vs 3). Haga clic aquí para ver una versión más grande de esta figura.
reacciones | 1 | 2 | 3 | 4 (opcional) | 5 (opcional) |
purificada proteína-sustrato acetilado (10 mg) | + | + | + | + | + |
tampón B | + | + | + | + | + |
SIRT2 purificada (2 g) | - | + | + | - | + |
NAD + (1 milimicras) | - | - | + | + | + |
H187Y SIRT2 purificada (2 g) | - | - | - | + | - |
NAM (10 mM) | - | - | - | - | + |
Tabla 1: ingredientes de la reacción.
muestras | sobreexpresión | noquear |
1 | Pcdh-puro-GFP-vector vacío | pLKO1 vector vacío o si ctr |
2 | Pcdh-puro-GFP-SIRT2-Flag | pLKO1 sh SIRT2 1 o si SIRT2 1 |
3 | Pcdh-puro-GFP-SIRT2 H187Y -Flag | pLKO1 sh SIRT2 2 o si SIRT2 2 |
Tabla 2: Proteína muestras.
Recent high throughput proteomic studies have established acetylation as a widespread PTM found not only in nucleus but also in cytoplasm and mitochondria 7,8,21-23. Taking into account the likelihood that many more acetylated proteins and sites might have been not detected due to several reasons, such as specificity of the anti-Ac-K antibodies used, the low abundance of the acetylated proteins, and the transient nature of the PTM, it is safe to predict that more acetylated proteins remain to be discovered in the future, highlighting the importance of reversible acetylation as a regulatory modification directing diverse cellular processes. Regardless of the magnitude of acetylation, identifying the deacetylases which can specifically deacetylate such protein-substrates is an important first step in unraveling the biology of protein acetylation and understanding the complexity of this phenomenon. Towards this direction, use of both in vitro and in vivo deacetylation assays are crucial and necessary to establish the regulatory interplay between deacetylases and their substrates.
Here we present an example of how deacetylation assays can be used in order for an acetylated protein to be considered as a legitimate deacetylation target of SIRT2. As it has already been mentioned, the sirtuin family of proteins consists of seven members which can be found in the cytoplasm, mitochondria, and nucleus 15. Given the increasing interest regarding the role of these proteins in the different subcellular compartments which can be associated with distinct cellular processes, the above described deacetylation assays can be used with slight modifications to identify new substrates for all different members of the sirtuin family. For example, when mitochondrial proteins are used in deacetylation assays related to SIRT3, it may be necessary to include a mitochondrial isolation step 24,25 between cell lysis and immunoprecipitation during the purification process for the in vitro deacetylation assay or during the in vivo deacetylation assay before detecting acetylated protein levels. In a similar way, when nuclear proteins need to be used as deacetylation targets in these assays, nuclear extracts following subcellular fractionation might be used for protein purification and the in vivo deacetylation assay.
A critical step for executing the in vitro deacetylation assay is the successful purification of both the deacetylase and the acetylated protein-substrate. Verification of the cells overexpressing the deacetylase as well as the acetylated protein-substrate before the initiation of the purification step is highly recommended. Furthermore, detection of the purified proteins after running a small amount of the isolated proteins on an SDS-PAGE gel before the in vitro deacetylation reaction is also recommended. This will not only confirm the completion of the purification step but will help investigators to focus their efforts on optimizing the deacetylation reaction conditions for any given protein-substrate and deacetylase of interest in case of an unsuccessful deacetylation assay which may require changes in the enzyme-substrate ratio used. Of note, even if a positive deacetylation reaction is detected using the in vitro assay, further validation is required before any conclusion can be made regarding the establishment of a protein as a deacetylation target of a specific deacetylase. This limitation is due to the fact that the co-presence of the substrate and the deacetylase in the tube does not mean that both can be found in the same complex in cells or tissues. This implies that the deacetylation needs to be further validated in vivo. With the focus on the in vivo deacetylation assay, it is worth mentioning that the steady state acetylation levels of a given protein under the experimental conditions tested is a crucial factor in determining whether overexpression or knockdown experiments are more suitable to establish the functional interplay between a deacetylase and its substrate. High levels of acetylation may direct the experimental design towards overexpressing the specific deacetylase to detect a decrease in the acetylation levels. On the contrary, when low levels of acetylation are detected under normal conditions, increased acetylation after knocking down the specific deacetylase might establish the mechanistic connection between a deacetylase and its substrate. Taking all these together, it is clear that the deacetylation assays described in this protocol are necessary to link a deacetylase with its potential substrate.
The next challenges in the field of lysine acetylation dictate that deacetylation assays will be used in the future to address some of the missing links. The considerable gap between the large number of identified mitochondrial lysine sites and the few with a validated regulatory function 26 highlights the need to distinguish bona fide functional acetylation sites from what may be widespread spurious modifications. In vitro and in vivo deacetylation assays carried over by specific deacetylases may be further combined with small scale MS analysis to reveal specific target lysines on a tested substrate to distinguish functional acetylation sites from what may be non-regulatory acetylated lysines. In this regard, sites which are deacetylated due to the enzymatic activity of a sirtuin are more likely to play a functional role compared to sites that are not deacetylated. Another significant challenge is the examination of lysine acetylation in a physiological context. It seems very likely that the acetylation profile of a cell may vary under specific experimental conditions. In vivo deacetylation assays in cells under specific experimental conditions can provide further insight into the connection between the deacetylase and the potential substrate in physiological and pathophysiological scenarios depending on the cell type, or the exposure to specific signaling molecules and stressors. Such studies can establish the functional role of a deacetylation event in a physiological context and connect it to a phenotypic outcome or response. More importantly, deacetylation assays in combination with small scale MS analysis can further provide meaningful information regarding regulatory acetylated lysines under specific cellular conditions.
In conclusion, identification of the enzymes that deacetylate acetylated proteins and sites by using both in vitro and in vivo deacetylation assays will help to resolve the complexity of the acetylome and will contribute to better understanding of the regulatory role of acetylation under various physiological conditions.
Los autores no tienen nada que revelar.
El proyecto descrito aquí fue apoyado por una subvención del NIH / NCI (NCI-R01CA182506-01A1), así como por el H. Lurie Centro Integral del Cáncer Robert - La Fundación Familia Lefkofsky / Liz y Premio de Investigación Eric Lefkofsky Innovación a AV Quisiéramos agradecer a los miembros del laboratorio (Carol O'Callaghan y Elizabeth Anne Wayne) para la lectura crítica y la edición de este manuscrito.
Name | Company | Catalog Number | Comments |
cell culture dishes | Denville Scientific Inc. | T1110 and T1115 | |
pCDH-puro-GFP lentiviral vector | System Biosciences | CD513B-1 | |
pCMV- dR8.2 dvpr (packaging vector) | Addgene | 8455 | |
pCMV-VSV-G (envelope vector) | Addgene | 8454 | |
polyethylenimine (PEI) | Polysciences Inc. | 24885 | other transfection reagents can be used as well. PEI is cost effective and very efficient in transfecting 293T cells |
0.22 μm filters | Denville Scientific Inc. | F5512 | |
polybrene | Sigma | H9268 | |
fluorescent microscope | Carl Zeiss MicroImaging Inc. | Axiovert 200 | |
puromycin | Invivogen | A11138-03 | |
PBS | Corning | 21-031-CM | |
anti-Flag antibody | Sigma | F3165 | |
HEPES | Sigma | H3375 | |
KCl | Sigma | P9541 | |
Glycerol | Sigma | G5516 | |
NP-40 | Sigma | 74385 | |
MgCl2 | Sigma | M9272 | |
EGTA | Sigma | 34596 | |
protease inhibitors coctail 100x | Biotool | B14001 | |
Trichostatin A (TSA) | Sigma | T8552 | selective inhibitor of class I and II histone deacetylases (HDACs) but not class III HDACs (sirtuins) |
anti-Flag agarose beads | Sigma | A2220 | |
centrifuge | Eppendorf | 5417R | |
rotator | Thermo Scientific | 415220Q | |
filter tubes | Millipore | UFC30HV00 | |
Flag peptide | Sigma | F3290 | |
Vivaspin Centrifugal Concentrator | Sartorius Stedim Biotech S.A. | VS0102 | |
SimplyBlue SafeStain solution | Invitrogen | LC6060 | |
NuPAGE LDS sample buffer (4x) | Life Techologies | NP0007 | |
Tris-HCl pH 7.5 | Sigma | T5941 | |
NAD+ | Sigma | N0632 | required cofactor for sirtuins |
nicotinamide (NAM) | Sigma | 72340 | selective inhibitor class III HDACs (sirtuins) |
pLKO.1 lentiviral vector | Addgene | 8453 | |
SIRT2 si RNA | Qiagen | GS22933 | |
anti-SIRT2 antibody | Proteintech | 15345-1-AP | |
Bradford protein assay | BIO-RAD | 500-0006 | |
anti Ac-K agarose beads | Immunechem | ICP0388 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados