Anmelden

A conventional Raman spectrophotometer includes a laser source, a sample holding system, a wavelength selector, and a detector.

The monochromatic laser source, typically using visible or near-infrared radiation, generates a highly focused beam of light. This light interacts with the molecules of the sample, scattering some of the light. Liquid and gaseous samples are usually tested in ordinary glass capillaries, while solids can be analyzed as powders packed in capillaries or as potassium bromide pellets. The scattered light is collected using a separate lens and focused onto the entrance of a monochromator, which disperses the light into its constituent frequencies.

To ensure accurate results, the output is filtered extensively to remove stray laser radiation and Rayleigh scattering, which can interfere with the Raman signal. The optical signal is then converted into an electrical signal within the detector, often a charge-coupled device or photomultiplier tube, allowing it to be processed and visualized as a Raman spectrum.

In some cases, high-quality bandpass and notch filters are used in fiber-optic Raman spectrometers to minimize Rayleigh-scattered radiation. Another variation, the Fourier Transform Raman instrument, replaces the monochromator with a Michelson interferometer and uses a continuous-wave laser. After passing through the filters, the radiation is focused onto a cooled germanium detector for analysis.

Aus Kapitel 13:

article

Now Playing

13.19 : Raman Spectroscopy Instrumentation: Overview

Molecular Vibrational Spectroscopy

221 Ansichten

article

13.1 : Infrared (IR) Spectroscopy: Overview

Molecular Vibrational Spectroscopy

1.3K Ansichten

article

13.2 : IR Spectroscopy: Molecular Vibration Overview

Molecular Vibrational Spectroscopy

1.7K Ansichten

article

13.3 : IR Spectroscopy: Hooke's Law Approximation of Molecular Vibration

Molecular Vibrational Spectroscopy

1.0K Ansichten

article

13.4 : IR Spectrometers

Molecular Vibrational Spectroscopy

951 Ansichten

article

13.5 : IR Spectrum

Molecular Vibrational Spectroscopy

796 Ansichten

article

13.6 : IR Absorption Frequency: Hybridization

Molecular Vibrational Spectroscopy

577 Ansichten

article

13.7 : IR Absorption Frequency: Delocalization

Molecular Vibrational Spectroscopy

651 Ansichten

article

13.8 : IR Frequency Region: X–H Stretching

Molecular Vibrational Spectroscopy

855 Ansichten

article

13.9 : IR Frequency Region: Alkyne and Nitrile Stretching

Molecular Vibrational Spectroscopy

712 Ansichten

article

13.10 : IR Frequency Region: Alkene and Carbonyl Stretching

Molecular Vibrational Spectroscopy

616 Ansichten

article

13.11 : IR Frequency Region: Fingerprint Region

Molecular Vibrational Spectroscopy

616 Ansichten

article

13.12 : IR Spectrum Peak Intensity: Amount of IR-Active Bonds

Molecular Vibrational Spectroscopy

552 Ansichten

article

13.13 : IR Spectrum Peak Intensity: Dipole Moment

Molecular Vibrational Spectroscopy

580 Ansichten

article

13.14 : IR Spectrum Peak Broadening: Hydrogen Bonding

Molecular Vibrational Spectroscopy

717 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten